[1] Hosono H (2007) Recent progress in transparent oxide semiconductors: materials and device application. Thin Solid Films 515:6000-6014. https://doi.org/10.1016/j.tsf.2006.12.125 [2] Liu H, Avrutin V, Izyumskaya N, Özgür Ü, Morkoç H (2010) Transparent conducting oxides for electrode applications in light emitting and absorbing devices. Superlattices Microstruct 48:458-484. https://doi.org/10.1016/j.spmi.2010.08.011 [3] Minami T (2013) Transparent conductive oxides for transparent electrode applications. Semiconductors and Semimetals. Elsevier, USA, pp 159-200 [4] Afre RA, Sharma N, Sharon M, Sharon M (2018) Transparent conducting oxide films for various applications: a review. Rev Adv Mater Sci 53:79-89. https://doi.org/10.1515/rams-2018-0006 [5] Althumayri M, Das R, Banavath R, Beker L, Achim AM, Ceylan Koydemir H (2024) Recent advances in transparent electrodes and their multimodal sensing applications. Adv Sci 11:2405099. https://doi.org/10.1002/advs.202405099 [6] Moerland RJ, Hoogenboom JP (2016) Subnanometer-accuracy optical distance ruler based on fluorescence quenching by transparent conductors. Optica 3:112-117. https://doi.org/10.1364/OPTICA.3.000112 [7] Chance RR, Prock A, Silbey R (1978) Molecular fluorescence and energy transfer near interfaces. In: Prigogine I, Rice SA (eds) Advances in Chemical Physics, 1st edn. Wiley, New York, pp 1-65 [8] Dexter DL (1979) Two ideas on energy transfer phenomena: ion-pair effects involving the OH stretching mode, and sensitization of photovoltaic cells. J Lumin 18-19:779-784. https://doi.org/10.1016/0022-2313(79)90235-7 [9] Hayashi T, Castner TG, Boyd RW (1983) Quenching of molecular fluorescence near the surface of a semiconductor. Chem Phys Lett 94:461-466. https://doi.org/10.1016/0009-2614(83)85032-5 [10] Liang Y, Goncalves AMP (1985) Time-resolved measurements of the fluorescence of Rhodamine B on semiconductor and glass surfaces. J Phys Chem 89:3290-3294. https://doi.org/10.1021/j100261a025 [11] Hashimoto K, Hiramoto M, Sakata T (1988) Photo-induced electron transfer from adsorbed rhodamine B to oxide semiconductor substrates in vacuo: semiconductor dependence. Chem Phys Lett 148:215-220. https://doi.org/10.1016/0009-2614(88)80302-6 [12] Lu HP, Xie XS (1997) Single-molecule kinetics of interfacial electron transfer. J Phys Chem B 101:2753-2757. https://doi.org/10.1021/jp9634518 [13] Peterson EM, Harris JM (2013) Imaging fluorescent nanoparticles to probe photoinduced charging of a semiconductor-solution interface. Langmuir 29:11941-11949. https://doi.org/10.1021/la402468k [14] Ma Y, Macmillan A, Yang Y, Gaus K (2022) Lifetime based axial contrast enable simple 3D-STED imaging. Methods Appl Fluoresc 10:035001. https://doi.org/10.1088/2050-6120/ac5e10 [15] Isbaner S, Karedla N, Kaminska I, Ruhlandt D, Raab M, Bohlen J et al (2018) Axial colocalization of single molecules with nanometer accuracy using metal-induced energy transfer. Nano Lett 18:2616-2622. https://doi.org/10.1021/acs.nanolett.8b00425 [16] Karedla N, Chizhik AI, Gregor I, Chizhik AM, Schulz O, Enderlein J (2014) Single-molecule metal-induced energy transfer (smMIET): resolving nanometer distances at the single-molecule level. ChemPhysChem 15:705-711. https://doi.org/10.1002/cphc.201300760 [17] Chizhik AI, Rother J, Gregor I, Janshoff A, Enderlein J (2014) Metal-induced energy transfer for live cell nanoscopy. Nat Photonics 8:124-127. https://doi.org/10.1038/nphoton.2013.345 [18] Szalai AM, Ferrari G, Richter L, Hartmann J, Kesici M-Z, Ji B et al (2024) Single-molecule dynamic structural biology with vertically arranged DNA on a fluorescence microscope. Nat Methods. https://doi.org/10.1038/s41592-024-02498-x [19] Backlund MP, Lew MD, Backer AS, Sahl SJ, Moerner WE (2014) The role of molecular dipole orientation in single-molecule fluorescence microscopy and implications for super-resolution imaging. ChemPhysChem 15:587-599. https://doi.org/10.1002/cphc.201300880 [20] Lu J, Mazidi H, Ding T, Zhang O, Lew MD (2020) Single-molecule 3D orientation imaging reveals nanoscale compositional heterogeneity in lipid membranes. Angew Chem Int Ed 59:17572-17579. https://doi.org/10.1002/anie.202006207 [21] Nguyen TD, Chen YI, Chen LH, Yeh HC (2023) Recent advances in single-molecule tracking and imaging techniques. Annu Rev Anal Chem 16:253-284. https://doi.org/10.1146/annurev-anchem-091922-073057 [22] Moerner WE (2015) Single-molecule spectroscopy, imaging, and photocontrol: foundations for super-resolution microscopy (Nobel Lecture). Angew Chem Int Ed 54:8067-8093. https://doi.org/10.1002/anie.201501949 [23] Reinhardt SCM, Masullo LA, Baudrexel I, Steen PR, Kowalewski R, Eklund AS et al (2023) Ångström-resolution fluorescence microscopy. Nature 617:711-716. https://doi.org/10.1038/s41586-023-05925-9 [24] Weber M, Von Der Emde H, Leutenegger M, Gunkel P, Sambandan S, Khan TA et al (2023) MINSTED nanoscopy enters the Ångström localization range. Nat Biotechnol 41:569-576. https://doi.org/10.1038/s41587-022-01519-4 [25] Khanna K, Mandal S, Blanchard AT, Tewari M, Johnson-Buck A, Walter NG (2021) Rapid kinetic fingerprinting of single nucleic acid molecules by a FRET-based dynamic nanosensor. Biosens Bioelectron 190:113433. https://doi.org/10.1016/j.bios.2021.113433 [26] Shin S, Han S, Kim J, Shin Y, Song JJ, Hohng S (2023) Fast, sensitive, and specific multiplexed single-molecule detection of circulating tumor DNA. Biosens Bioelectron 242:115694. https://doi.org/10.1016/j.bios.2023.115694 [27] He H, Hao R (2024) Multiplexed fluoro-electrochemical single-molecule counting enabled by SiC semiconducting nanofilm. Nano Lett 24:11051-11058. https://doi.org/10.1021/acs.nanolett.4c03199 [28] Ovesný M, Křížek P, Borkovec J, Švindrych Z, Hagen GM (2014) ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics 30:2389-2390. https://doi.org/10.1093/bioinformatics/btu202 [29] Li H, Zhang J, Zhou X, Lu G, Yin Z, Li G et al (2010) Aminosilane micropatterns on hydroxyl-terminated substrates: fabrication and applications. Langmuir 26:5603-5609. https://doi.org/10.1021/la9039144 [30] Zandieh M, Patel K, Liu J (2022) Adsorption of linear and spherical DNA oligonucleotides onto microplastics. Langmuir 38:1915-1922. https://doi.org/10.1021/acs.langmuir.1c03190 [31] Jung GY, Li Z, Wu W, Chen Y, Olynick DL, Wang SY et al (2005) Vapor-phase self-assembled monolayer for improved mold release in nanoimprint lithography. Langmuir 21:1158-1161. https://doi.org/10.1021/la0476938 [32] Zadeh JN, Steenberg CD, Bois JS, Wolfe BR, Pierce MB, Khan AR et al (2011) NUPACK: analysis and design of nucleic acid systems. J Comput Chem 32:170-173. https://doi.org/10.1002/jcc.21596 [33] Dekking FM, Kraaikamp C, Lopuhaä HP, Meester LE (2005) Exploratory data analysis: numerical summaries. In: Dekking FM, Kraaikamp C, Lopuhaä HP, Meester LE (eds) A Modern Introduction to Probability and Statistics: Understanding Why and How. Springer, London, pp 231-243. https://doi.org/10.1007/1-84628-168-7_16 |