Moore and More ›› 2025, Vol. 1 ›› Issue (3): 241-266.DOI: 10.1007/s44275-024-00015-y
• Review • Previous Articles Next Articles
Yuhui Song1, Xiaomin Zhang1, Lijian Ning1, Qian Zhou1, Jinkun Feng1, Yanli Wang1, Qiuyu Gong2, Yinjuan Huang1
Received:2024-09-14
Revised:2024-10-11
Accepted:2024-10-16
Online:2025-11-29
Published:2024-12-23
Contact:
Qiuyu Gong,E-mail:gongqiuyu@xjtu.edu.cn;Yinjuan Huang,E-mail:huangyj@xjtu.edu.cn
Supported by:Yuhui Song1, Xiaomin Zhang1, Lijian Ning1, Qian Zhou1, Jinkun Feng1, Yanli Wang1, Qiuyu Gong2, Yinjuan Huang1
通讯作者:
Qiuyu Gong,E-mail:gongqiuyu@xjtu.edu.cn;Yinjuan Huang,E-mail:huangyj@xjtu.edu.cn
作者简介:Yuhui Song received his BS degree from Northwest A&F University in 2023. He is now pursuing her master’s degree at Xi’an Jiaotong University under the supervision of Prof. Yinjuan Huang. His current research interests include design, synthesis, co-assembly and application of novel smart luminescent materials.基金资助:Yuhui Song, Xiaomin Zhang, Lijian Ning, Qian Zhou, Jinkun Feng, Yanli Wang, Qiuyu Gong, Yinjuan Huang. Smart organic crystalline materials based on photo-induced topochemistry[J]. Moore and More, 2025, 1(3): 241-266.
Yuhui Song, Xiaomin Zhang, Lijian Ning, Qian Zhou, Jinkun Feng, Yanli Wang, Qiuyu Gong, Yinjuan Huang. Smart organic crystalline materials based on photo-induced topochemistry[J]. Moore and More, 2025, 1(3): 241-266.
Add to citation manager EndNote|Ris|BibTeX
| [1] Bhandary S, Beliš M, Kaczmarek AM, Hecke KV (2022) Photomechanical motions in organoboron-based phosphorescent molecular crystals driven by a crystal-state [2 + 2] cycloaddition reaction. J Am Chem Soc 144:22051-22058. https://doi.org/10.1021/jacs.2c09285 [2] Huang Y, Ning L, Zhang X, Zhou Q, Gong Q, Zhang Q (2024) Stimuli-fluorochromic smart organic materials. Chem Soc Rev 53:1090-1166. https://doi.org/10.1039/D2CS00976E [3] Tang Y, Chen X (2022) Marching towards flexible intelligent materials. Sci China Mater 65:1991-1993. https://doi.org/10.1007/s40843-022-2161-9 [4] Sagara Y, Yamane S, Mitani M, Weder C, Kato T (2016) Mechanoresponsive luminescent molecular assemblies: an emerging class of materials. Adv Mater 28:1073-1095. https://doi.org/10.1002/adma.201502589 [5] Praveen VK, Vedhanarayanan B, Mal A, Mishra RK, Ajayaghosh A (2020) Self-assembled extended π-systems for sensing and security applications. Acc Chem Res 53:496-507. https://doi.org/10.1021/acs.accounts.9b00580 [6] Zhang J, He B, Hu Y, Alam P, Zhang H, Lam JWY et al (2021) Stimuli-responsive AIEgens. Adv Mater 33:2008071. https://doi.org/10.1002/adma.202008071 [7] Kortekaas L, Browne WR (2019) The evolution of spiropyran: fundamentals and progress of an extraordinarily versatile photochrome. Chem Soc Rev 48:3406-3424. https://doi.org/10.1039/C9CS00203K [8] Seeboth A, Lötzsch D, RuhmannR MO (2014) Thermochromic polymers-function by design. Chem Rev 114:3037-3068. https://doi.org/10.1021/cr400462e [9] Park S-H, Kwon N, Lee J-H, Yoon J, Shin I (2020) Synthetic ratiometric fluorescent probes for detection of ions. Chem Soc Rev 49:143-179. https://doi.org/10.1039/C9CS00243J [10] Wang Y, Zhang Y-M, Zhang SX-A (2021) Stimuli-induced reversible proton transfer for stimuli-responsive materials and devices. Acc Chem Res 54:2216-2226. https://doi.org/10.1021/acs.accounts.1c00061 [11] Yan D, Wang Z, Zhang Z (2022) Stimuli-responsive crystalline smart materials: from rational design and fabrication to applications. Acc Chem Res 55:1047-1058. https://doi.org/10.1021/acs.accounts.2c00027 [12] Xu F, Feringa BL (2023) Photoresponsive supramolecular polymers: from light-controlled small molecules to smart materials. Adv Mater 35:2204413. https://doi.org/10.1002/adma.202204413 [13] Ping X, Zhan J, Zhu Y, Wu Y, Hu C, Pan J et al (2023) Photoactivation of solid-state fluorescence through controllable intermolecular [2+2] photodimerization. Chem Eur J 29:e202301520. https://doi.org/10.1002/chem.202301520 [14] Peng J, Han C, Zhang X, Jia J, Bai J, Zhang Q et al (2023) Mechanical effects of elastic crystals driven by natural sunlight and force. Angew Chem Int Ed 62:e202311348. https://doi.org/10.1002/anie.202311348 [15] Liu C, Ye K, Wei ZL, Peng J, Xiao H, Sun J et al (2022) Fast photoactuation of elastic crystals based on 3-(naphthalen-1-yl)-2-phenylacrylonitriles triggered by subtle photoisomerization. Chem C 10:14273-14281. https://doi.org/10.1039/D2TC02667H [16] Zhang Q, Wang Y, Braunstein P, Lang J-P (2024) Construction of olefinic coordination polymer single crystal platforms: precise organic synthesis, in situ exploration of reaction mechanisms and beyond. Chem Soc Rev 53:5227-5263. https://doi.org/10.1039/D3CS01050C [17] Bhogala BR, Captain B, Parthasarathy A, Ramamurthy V (2010) Thiourea as a template for photodimerization of azastilbenes. J Am Chem Soc 132:13434-13442. https://doi.org/10.1021/ja105166d [18] Hoenders D, Ludwanowski S, Barner-Kowollik C, Walther A (2024) Cyclodextrin ‘chaperones’ enable quasi-ideal supramolecular network formation and enhanced photodimerization of hydrophobic, red-shifted photoswitches in water. Angew Chem Int Ed e202405582. https://doi.org/10.1002/anie.202405582 [19] Wu Y, Ping X, Yao C, Wu P, Han Z, Peng X et al (2024) Photoinduced fluorescence modulation through controllable intramolecular [2+2] photocycloaddition in single molecules and molecular aggregates. Chem Commun 60:1301-1304. https://doi.org/10.1039/D3CC05846H [20] Kory MJ, Wörle M, Weber T, Payamyar P, Poll SW, Dshemuchadse J et al (2014) Gram-scale synthesis of two-dimensional polymer crystals and their structure analysis by X-ray diffraction. Nat Chem 6:779-784. https://doi.org/10.1038/nchem.2007 [21] Seki T, Sakurada K, Muromoto M, Ito H (2015) Photoinduced single-crystal-to-single-crystal phase transition and photosalient effect of a gold(I) isocyanide complex with shortening of intermolecular aurophilic bonds. Chem Sci 6:1491-1497. https://doi.org/10.1039/C4SC02676D [22] Yang Y-H, Chen Y-S, Chuang W-T, Yang J-S (2024) Bifurcated polymorphic transition and thermochromic fluorescence of a molecular crystal involving three-dimensional supramolecular gear rotation. J Am Chem Soc 146:8131-8141. https://doi.org/10.1021/jacs.3c12454 [23] Diao Z-J, Liu S-Y, Wen H, Liu G, Yang T, Li J-J et al (2023) Detachable porous organic polymers responsive to light and heat. Angew Chem Int Ed e202301739. https://doi.org/10.1002/anie.202301739 [24] Ko H, Kang D-G, Choi Y-J, Wi Y, Kim S, Pham HH et al (2024) Polarization-dependent thin films with biaxial anisotropic absorption constructed by a single coating and subsequent topochemical polymerization of chromophores. J Am Chem Soc 146:4393-4401. https://doi.org/10.1021/jacs.3c06444 [25] Zhu Y, Shao P, Hu L, Sun C, Li J, Feng X et al (2021) Construction of interlayer conjugated links in 2D covalent organic frameworks via topological polymerization. J Am Chem Soc 143:7897-7902. https://doi.org/10.1021/jacs.1c02932 [26] Bhandary S, Beliš M, Shukla R, Bourda L, Kaczmarek AM, Hecke KV (2024) Single-crystal-to-single-crystal photosynthesis of supramolecular organoboron polymers with dynamic effects. J Am Chem Soc 146:8659-8667. https://doi.org/10.1021/jacs.4c00978 [27] Zhang S, Zhang L, Chen A, An Y, Chen X-M, Yang H et al (2024) Cucurbit[8]uril-mediated supramolecular heterodimerisation and photoinduced [2+2] heterocycloaddition to generate unexpected [2]rotaxanes. Angew Chem Int Ed e202410130. https://doi.org/10.1002/anie.202410130 [28] Wu W, Chen K, Wang T, Wang N, Huang X, Zhou L et al (2023) Stimuli-responsive flexible organic crystals. J Mater Chem C 11:2026-2052. https://doi.org/10.1039/D2TC04642C [29] Fan L-X, Chen L, Zhang H-Y, Xu W-H, Wang X-L, Xu S et al (2023) Dual photo-responsive diphenylacetylene enables PET in-situ upcycling with reverse enhanced UV-resistance and strength. Angew Chem Int Ed e202314448. https://doi.org/10.1002/anie.202314448 [30] Huang L, Yang Y, Shao J, Xiong G, Wang H, Nishiura M et al (2024) Synthesis of tough and fluorescent self-healing elastomers by scandium-catalyzed terpolymerization of pyrenylethenylstyrene, ethylene, and anisylpropylene. J Am Chem Soc 146:2718-2727. https://doi.org/10.1021/jacs.3c12342 [31] Pan G, Wu Z, Liu Z, Xu B, Tian W (2023) Photoinduced fluorescence switching in molecular aggregates by topological [2+2] cycloaddition. Angew Chem Int Ed e202303152. https://doi.org/10.1002/anie.202303152 [32] Shi X, Zhang K, Chen J, Qian H, Huang Y, Jiang B (2023) Octopi tentacles-inspired architecture enables self-healing conductive rapid-photo-responsive materials for soft multifunctional actuators. Adv Funct Mater 34:2311567. https://doi.org/10.1002/adfm.202311567 [33] Wei X, Li B, Yang Z, Zhong R, Wang Y, Chen Y et al (2021) Programmable photoresponsive materials based on a single molecule via distinct topochemical reactions. Chem Sci 2:15588-15595. https://doi.org/10.1039/D1SC04053G [34] George GC, Hutchins KM (2023) Solid-state [4+4] cycloaddition and cycloreversion with use of unpaired hydrogen-bond donors to achieve solvatomorphism and stabilization. Chem Eur J 29 [35] Li M, Schlüter AD, Sakamoto J (2012) Solid-state photopolymerization of a shape-persistent macrocycle with two 1,8-diazaanthracene units in a single crystal. J Am Chem Soc 134:1721-11725. https://doi.org/10.1021/ja3038905 [36] Hema K, Ravi A, Raju C, Pathan JR, Rai R, Sureshan KM (2021) Topochemical polymerizations for the solid-state synthesis of organic polymers. Chem Soc Rev 50:4062-4099. https://doi.org/10.1039/D0CS00840K [37] Biradha K, Santra R (2013) Crystal engineering of topochemical solid state reactions. Chem Soc Rev 42(950):967. https://doi.org/10.1039/C2CS35343A [38] Schmidt GMJ (1971) Photodimerization in the solid state. Pure Appl Chem 27:647-678. https://doi.org/10.1351/pac197127040647 [39] Grossmann L, King BT, Reichlmaier S, Hartmann N, Rosen J, Heckl WM et al (2021) On-surface photopolymerization of two-dimensional polymers ordered on the mesoscale. Nat Chem 13:730-736. https://doi.org/10.1038/s41557-021-00709-y [40] Kissel P, Murray DJ, Wulftange WJ, Catalano VJ, King BT (2014) A nanoporous two-dimensional polymer by single-crystal-to-single-crystal photopolymerization. Nat Chem 6:774-778. https://doi.org/10.1038/nchem.2008 [41] Sun C, Oppenheim JJ, Skorupskii G, Yang L, Dincă M (2022) Reversible topochemical polymerization and depolymerization of a crystalline 3D porous organic polymer with C-C bond linkages. Chem 8:3215-3224. https://doi.org/10.1016/j.chempr.2022.07.028 [42] Guo Q-H, Jia M, Liu Z, Qiu Y, Chen H, Shen D et al (2020) Single-crystal polycationic polymers obtained by single-crystal-tosingle-crystal photopolymerization. J Am Chem Soc 142:6180-6187. https://doi.org/10.1021/jacs.9b13790 [43] Hu F, Hao W, Mücke D, PanQ LZ, Qi H et al (2021) Highly efficient preparation of single-layer two-dimensional polymer obtained from single-crystal to single-crystal synthesis. J Am Chem Soc 143:5636-5642. https://doi.org/10.1021/jacs.1c00907 [44] Tanaka K, Toda F (2000) Solvent-free organic synthesis. Chem Rev 100:1025-1074. https://doi.org/10.1021/cr940089p [45] Toda F (2005) Organic solid-state reactions, in top. Curr Chem 254. https://doi.org/10.1007/b100997 [46] Green BS, Lahav M, Rabinovich D (1979) Asymmetric synthesis via reactions in chiral crystals. Acc Chem Res 12:191-197. https://doi.org/10.1021/ar50138a001 [47] Vittal JJ, Quah HS (2017) Photochemical reactions of metal complexes in the solid state. Dalton Trans 46:7120-7140. https://doi.org/10.1039/C7DT00873B [48] Chung JW, You Y, Huh HS, An B-K, Yoon S-J, Kim SH et al (2009) Shear- and UV-induced fluorescence switching in stilbenic π-dimer crystals powered by reversible [2 + 2] cycloaddition. J Am Chem Soc 131:8163-8172. https://doi.org/10.1021/ja900803d [49] Khan S, Dutta B, Mir MH (2020) Impact of solid-state photochemical [2+2] cycloaddition on coordination polymers for diverse applications. Dalton Trans 49:9556-9563. https://doi.org/10.1039/D0DT01534B [50] Hema K, Sureshan KM (2019) Topochemical azide-alkyne cycloaddition reaction. Acc Chem Res 52:3149-3163. https://doi.org/10.1021/acs.accounts.9b00398 [51] Yuhara K, Tanaka K (2024) The photosalient effect and thermochromic luminescence based on o-carborane-assisted π-stacking in the crystalline state. Angew Chem Int Ed 63:e202319712. https://doi.org/10.1002/anie.202319712 [52] Morimoto K, Kitagawa D, Sotome H, Ito S, Miyasaka H, Kobatake S (2022) Edge-to-center propagation of photochemical reaction during single-crystal-to-single-crystal photomechanical transformation of 2,5-distyrylpyrazine crystals. Angew Chem Int Ed 61:e202212290. https://doi.org/10.1002/anie.202212290 [53] Li S, Lu B, Fang X, Yan D (2020) Manipulating light-induced dynamic macro-movement and static photonic properties within 1D isostructural hydrogen-bonded molecular cocrystals. Angew Chem Int Ed 59:22623-22630. https://doi.org/10.1002/anie.202009714 [54] Li P, Wang J, Li P, Lai L, Yin M (2021) Minor alkyl modifications for manipulating the fluorescence and photomechanical properties in molecular crystals. Mater Chem Front 5:1355-1363. https://doi.org/10.1039/D0QM00843E [55] Schluter AD, Weber T, Hofer G (2020) How to use X-ray diffraction to elucidate 2D polymerization propagation in single crystals. Chem Soc Rev 49:5140-5158. https://doi.org/10.1039/D0CS00176G [56] Han Y-F, Jin G-X (2014) Half-sandwich iridium- and rhodium-based organometallic architectures: rational design, synthesis, characterization, and applications. Acc Chem Res 47:3571-3579. https://doi.org/10.1021/ar500335a [57] Medishetty R, Park I-H, Lee SS, Vittal JJ (2016) Solid-state polymerisation via [2+2] cycloaddition reaction involving coordination polymers. Chem Commun 52:3989-4001. https://doi.org/10.1039/C5CC08374E [58] Jang D, Heo J-M, Jannah F, Khazi ML, Son YJ, Noh J et al (2022) Stimulus-responsive tubular conjugated polymer 2D nanosheets. Angew Chem Int Ed e202211465. https://doi.org/10.1002/anie.202211465 [59] Naumov P, Chizhik S, Panda MK, Nath NK, Boldyreva E (2015) Mechanically responsive molecular crystals. Chem Rev 115:12440-12490. https://doi.org/10.1021/acs.chemrev.5b00398 [60] Naumov P, Karothu DP, Ahmed E, Catalano L, Commins P, Halabi JM et al (2020) The rise of the dynamic crystals. J Am Chem Soc 142:13256-13272. https://doi.org/10.1021/jacs.0c05440 [61] Rath B, Vittal JJ (2022) Photoreactive crystals exhibiting [2 + 2] photocycloaddition reaction and dynamic effects. Acc Chem Res 55:1445-1455. https://doi.org/10.1021/acs.accounts.2c00107 [62] Kole GK, Tan GK, Vittal JJ (2010) Anion-controlled stereoselective synthesis of cyclobutane derivatives by solid-state [2 + 2] cycloaddition reaction of the salts of trans-3-(4-Pyridyl) acrylic acid. Org Lett 12:128-131. https://doi.org/10.1021/ol9025233 [63] Xu T-Y, Tong F, Xu H, Wang M-Q, Tian H, Qu D-H (2022) Engineering photomechanical molecular crystals to achieve extraordinary expansion based on solid-state [2 + 2] photocycloaddition. J Am Chem Soc 144:6278-6290. https://doi.org/10.1021/jacs.1c12485 [64] Samanta R, Kitagawa D, Mondal A, Bhattacharya M, Annadhasan M, Mondal S et al (2020) Mechanical actuation and patterning of rewritable crystalline monomer-polymer heterostructures via topochemical polymerization in a dual-responsive photochromic organic material. ACS Appl Mater Interfaces 12:16856-16863. https://doi.org/10.1021/acsami.9b23189 [65] Khan S, Akhtaruzzaman MR, Ekka A, Mir MH (2021) Mechanical motion in crystals triggered by solid state photochemical [2+2] cycloaddition reaction. Chem Asian J 16:2806-2816. https://doi.org/10.1002/asia.202100807 [66] Payamyar P, King BT, Öttinger HC, Schlüter AD (2016) Two-dimensional polymers: concepts and perspectives. Chem Commun 52:18-34. https://doi.org/10.1039/C5CC07381B [67] Ramamurthy V, Sivaguru J (2016) Supramolecular photochemistry as a potential synthetic tool: photocycloaddition. Chem Rev 116:9914-9993. https://doi.org/10.1021/acs.chemrev.6b00040 [68] Rath BB, Vittal JJ (2021) Dynamic effects in crystalline coordination polymers. CrystEngComm 23:5738-5752. https://doi.org/10.1039/D1CE00441G [69] Yu J-G, Gan M-M, Baia S, Han Y-F (2019) Photodriven solid-state multiple [2 + 2] cycloaddition strategies for the construction of polycyclobutane derivatives. CrystEngComm 21:4673-4683. https://doi.org/10.1039/C9CE00971J [70] Liebermann C, Bergami O (1889) Berichte der deutschen chemischen gesellschaft. Chem Ges 22:782-786. https://doi.org/10.1002/cber.188902201171 [71] Chalek KR, Dong X, Tong F, Kudla RA, Zhu L, Gill AD et al (2021) Bridging photochemistry and photomechanics with NMR crystallography: the molecular basis for the macroscopic expansion of an anthracene ester nanorod. Chem Sci 12:453-463. https://doi.org/10.1039/D0SC05118G [72] Nishiuchi T, Kisaka K, Kubo T (2021) Synthesis of anthracene-based cyclic p-clusters and elucidation of their properties originating from congested aromatic planes. Angew Chem Int Ed 60:5400-5406. https://doi.org/10.1002/anie.202013349 [73] Giri P, Panda AP, Panda MK (2024) Photoinduced puffing with large volume expansion and photomechanical motions induced by topochemical [4+4] reactions in molecular crystal solvates. Chem Eur J 30:e202303836. https://doi.org/10.1002/chem.202303836 [74] Chen Y-S, Wang C-H, Hu Y-H, Lu C-Y, Yang J-S (2023) An elastic organic crystal enables macroscopic photoinduced crystal elongation. J Am Chem Soc 145:6024-6028. https://doi.org/10.1021/jacs.2c13210 [75] Beyer H, Kory MJ, Hofer G, Stemmer A, Schlüter AD (2017) Exfoliation of two-dimensional polymer single crystals into thin sheets and investigations of their surface structure by high-resolution atomic force microscopy. Nanoscale 9:9481-9490. https://doi.org/10.1039/C7NR02210G [76] Servalli M, Trapp N, Schlüter AD (2018) Single-crystal-to-single-crystal (SCSC) linear polymerization of a desymmetrized anthraphane. Chem Eur J 24:15003-15012. https://doi.org/10.1002/chem.201802513 [77] Wang Z, Dong S, Yuan W, Li J, Ma X, Liu F et al (2024) Photo-modulated ionic polymer as an adaptable electron transport material for optically switchable pixel-free displays. Adv Mater 36:2309593. https://doi.org/10.1002/adma.202309593 [78] Li C, Liu J, Qiu X, Yang X, Huang X, Zhang X (2023) Photoswitchable and reversible fluorescent eutectogels for conformal information encryption. Angew Chem Int Ed 62:e202313971. https://doi.org/10.1002/anie.202313971 [79] Hsu T-G, Chou H-C, Liang M-J, Lai Y-Y, Cheng Y-J (2019) Regio-and stereo-selective [4+4] photodimerization of angular-shaped dialkyltetracenedithiophene. Chem Commun 55:381-384. https://doi.org/10.1039/C8CC09485C [80] Yamada S, Kawamura C (2012) [4 + 4] Photodimerization of azaanthracenes in both solution and solid phase controlled by cation-π interactions. Org Lett 14:1572-1575. https://doi.org/10.1021/ol3003089 [81] Huang Z-A, Chen C, Yang X-D, FanX-B ZW, Tung C-H et al (2016) Synthesis of oligoparaphenylene-derived nanohoops employing an anthracene photodimerization-cycloreversion strategy. J Am Chem Soc 138:11144-11147. https://doi.org/10.1021/jacs.6b07673 [82] Yamamoto T, Yagyu S, Tezuka Y (2016) Light-and heat-triggered reversible linear-cyclic topological conversion of telechelic polymers with anthryl end groups. J Am Chem Soc 138:3904-3911. https://doi.org/10.1021/jacs.6b00800 [83] Kole GK, Kojima T, Kawano M, Vittal JJ (2014) Reversible single-crystal-to-single-crystal photochemical formation and thermal cleavage of a cyclobutane ring. Angew Chem Int Ed 53:2143-2146. https://doi.org/10.1002/anie.201306746 [84] Yelgaonkar SP, Campillo-Alvarado G, MacGillivray LR (2020) Phototriggered guest release from a nonporous organic crystal: remarkable single-crystal-to-single-crystal transformation of a binary cocrystal solvate to a ternary cocrystal. J Am Chem Soc 142(49):20772-20777. https://doi.org/10.1021/jacs.0c09732 [85] Zhang Y, Takeda T, Hoshino N, Akutagawa T (2023) Crystal design of photodimerization and proton dynamics in stilbene dicarboxylate salts. Cryst Growth Des 23:9121-9131. https://doi.org/10.1021/acs.cgd.3c01212 [86] Takahashi S, Miura H, Kasai H, Okada S, Oikawa H, Nakanishi H (2002) Single-crystal-to-single-crystal transformation of diolefin derivatives in nanocrystals. J Am Chem Soc 124:10944-10945. https://doi.org/10.1021/ja026564f [87] Lange RZ, Hofer G, Weber T, Schlüter AD (2017) A two-dimensional polymer synthesized through topochemical [2 + 2]-cycloaddition on the multigram scale. J Am Chem Soc 139:2053-2059. https://doi.org/10.1021/jacs.6b11857 [88] Lange RZ, Synnatschke K, Qi H, Huber N, Hofer G, Liang B et al (2020) Enriching and quantifying porous single layer 2D polymers by exfoliation of chemically modified van der waals crystals. Angew Chem Int Ed 59:5683-5695. https://doi.org/10.1002/anie.201912705 [89] Ding Y, Guo J, He X, Tao W, Shi Y, Xu J et al (2023) Tuned intra- and intermolecular photoreactions of tridentate cyanostilbenes with distinct aggregated-state photomechanical and dispersed-state photochromic behaviors. Adv Funct Mater 33:2212886. https://doi.org/10.1002/adfm.202212886 [90] Yuan W, Chen L, Yuan C, Zhang Z, Chen X, Zhang X et al (2023) Cooperative supramolecular polymerization of styrylpyrenes for color-dependent circularly polarized luminescence and photocycloaddition. Nat Commun 14:8022. https://doi.org/10.1038/s41467-023-43830-x [91] Richardson BJ, Zhang C, Rauthe P, Unterreiner A-N, Golberg DV, Poad BLJ et al (2023) Peptide self-assembly controlled photoligation of polymers. J Am Chem Soc 145:15981-15989. https://doi.org/10.1021/jacs.3c03961 [92] Xiang B, Wang X, Teng F, Liu L, Li M, Meng X et al (2023) Regulation of two-dimensional platelet micelles by dynamic changing of polymer topological architectures upon light irradiation. Macromolecules 56:9685-9696. https://doi.org/10.1021/acs.macromol.3c01720 [93] Carroll JA, Pashley-Johnson F, Frisch H, Barner-Kowollik C (2024) Photochemical action plots reveal red-shifted wavelength-dependent photoproduct distributions. Chem Eur J 30:e202304174. https://doi.org/10.1002/chem.202304174 [94] Tong F, Xu W, Guo T, Lui BF, Hayward RC, Palffy-Muhoray P et al (2020) Photomechanical molecular crystals and nanowire assemblies based on the [2+2] photodimerization of a phenylbutadiene derivative. J Mater Chem C 8:5036-5044. https://doi.org/10.1039/C9TC06946A [95] Yue Y, Dai J, Jin L, Liu C, Sun J, Ye K et al (2023) The factor beyond schmidt’s criteria impacting the photoinduced [2+2] cycloaddition reactivity and photoactuation of molecular crystals based on cyclic chalcone analogues. Chem Eur J 29:e202301525. https://doi.org/10.1002/chem.202301525 [96] Bhandary S, Beliš M, Bourda L, Kaczmarek AM, Hecke KV (2023) Visible light-fueled mechanical motions with dynamic phosphorescence induced by topochemical [2+2] reactions in organoboron crystals. Angew Chem Int Ed 62:e202304722. https://doi.org/10.1002/anie.202304722 [97] Kannan TS, Munan S, Kathiresan M, Samanta A, Kole GK (2023) Solid-state photodimerization reaction with photosalient effect and photophysical and electrochemical properties of n-methylated 1-naphthylvinyl-4-quinoline. Cryst Growth Des 23:8261-8269. https://doi.org/10.1021/acs.cgd.3c00955 [98] Kusumoto S, Wakabayashi K, Rakumitsu K, Harrowfield J, Kim Y and Koide Y (2024) Photo-and stress-induced bending of (E)-1,2-bis(pyridinium-4-yl)ethene dinitrate crystals. Chem Eur J e202401564. https://doi.org/10.1002/chem.202401564 [99] Nag S, Emmerling F, Tothadi S, Bhattacharya B, Ghosh S (2024) Distinct photomechanical responses of two new 1,3-dimethylbarbituric acid derivative crystals. CrystEngComm 26:2871-2882. https://doi.org/10.1039/D4CE00233D [100] Peng J, Ye K, Liu C, Sun J, Lu R (2019) The photomechanic effects of the molecular crystals based on 5-chloro-2-(naphthalenylvinyl)benzoxazols fueled by topo-photochemical reactions. J Mater Chem C 7:5433-5441. https://doi.org/10.1039/C9TC01084J [101] Wang H, Xing H, Gong J, Zhang H, Zhang J, Wei P et al (2020) ‘“Living”’ luminogens: light driven ACQ-to-AIE transformation accompanied with solid-state actuation. Mater Horiz 7:1566-1572. https://doi.org/10.1039/D0MH00447B [102] Guo Y, Cheng X, He Z, Zhou Z, Miao T, Zhang W (2023) Simultaneous chiral fixation and chiral regulation endowed by dynamic covalent bonds. Angew Chem Int Ed 62:e202312259 [103] Yamada S, Uematsu N, Yamashita K (2007) Role of cation-π interactions in the photodimerization of trans-4-styrylpyridines. J Am Chem Soc 129:12100-12101. https://doi.org/10.1021/ja074874y [104] Li F, Zhuang J, Jiang G, Tang H, Xia A, Jiang L et al (2008) A rewritable optical data storage material system by [2 + 2] photocycloreversion-photocycloaddition. Chem Mater 20:1194-1196. https://doi.org/10.1021/cm702351n [105] Kaiser J, Wegner G, Fischer EW (1972) Topochemical reactions of monomers with conjugated triple-bonds VII mechanism of transition from monomer to polymer phase during solid-state polymerisation. Isr J Chem 10:157-171. https://doi.org/10.1002/ijch.197200022 [106] Baughman RH (1974) Solid-state synthesis of large polymer single crystals. J Polym Sci 12:1511-1535. https://doi.org/10.1002/pol.1974.180120801 [107] Young RJ, Petermann J (1981) Structure and mechanical properties of polydiacetylene single crystals. Makromol Chem 182:621-625. https://doi.org/10.1002/MACP.1981.021820230 [108] Foley JL, Li L, Sandman DJ, Vela MJ, Foxman BM, Albro R et al (1999) Side group interactions in a polydiacetylene single crystal. J Am Chem Soc 121:7262-7263. https://doi.org/10.1021/ja990436i [109] Sun A, Lauher JW, Goroff NS (2006) Preparation of poly(diiododiacetylene), an ordered conjugated polymer of carbon and iodine. Science 312:1030-1034. https://doi.org/10.1126/science.1124621 [110] Yoon B, Shin H, Kang E-M, Cho DW, Shin K, Chung H et al (2013) Inkjet-compatible single-component polydiacetylene precursors for thermochromic paper sensors. ACS Appl Mater Interfaces 5:4527-4535. https://doi.org/10.1021/am303300g [111] Yao Y, Dong H, Liu F, Russell TP, Hu W (2017) Approaching intra- and interchain charge transport of conjugated polymers facilely by topochemical polymerized single crystals. Adv Mater 29:1701251. https://doi.org/10.1002/adma.201701251 [112] Takahashi S, Yagai S (2022) Harmonizing topological features of self-assembled fibers by rosette-mediated random supramolecular copolymerization and self-sorting of monomers by photo-cross-linking. J Am Chem Soc 144:13374-13383. https://doi.org/10.1021/jacs.2c05484 [113] Matsumoto A, Nagahama S, Odani T (2000) Molecular design and polymer structure control based on polymer crystal engineering. topochemical polymerization of 1,3-diene mono- and dicarboxylic acid derivatives bearing a naphthylmethylammonium group as the countercation. J Am Chem Soc 122:9109-9119. https://doi.org/10.1021/ja001093n [114] Nakamoto S, Tashiro K, Matsumoto A (2003) Vibrational spectroscopic study on the molecular deformation mechanism of a poly(trans-1,4-diethyl muconate) single crystal subjected to tensile stress. Macromolecules 36:109-117. https://doi.org/10.1021/ma021090q [115] Dou L, Zheng Y, Shen X, Wu G, Fields K, Hsu W-C et al (2014) Single-crystal linear polymers through visible light-triggered topochemical quantitative polymerization. Science 343:272-277. https://doi.org/10.1126/science.1245875 [116] Wei Z, Wang X, Seo B, Luo X, Hu Q, Jones J et al (2022) Side-chain control of topochemical polymer single crystals with tunable elastic modulus. Angew Chem Int Ed e202213840. https://doi.org/10.1002/anie.202213840 [117] Guo J, Fan J, Liu X, Zhao Z, Tang BZ (2020) Dancing brightly under light: intriguing photomechanical luminescence in constructing through-space conjugated AIEgens. Angew Chem Int Ed 59:8828-8832. https://doi.org/10.1002/anie.201913383 [118] Huang Y, Gao R-H, Liu M, Chen L-X, Ni X-L et al (2021) Cucurbit[n]uril-based supramolecular frameworks assembled through outer-surface interactions. Angew Chem Int Ed 60:15166-15191. https://doi.org/10.1002/anie.202002666 [119] Park SK, Diao Y (2020) Martensitic transition in molecular crystals for dynamic functional materials. Chem Soc Rev 49:8287-8314. https://doi.org/10.1039/D0CS00638F [120] Anwar J, Tuble SC, Kendrick J (2007) Concerted molecular displacements in a thermally-induced solid-state transformation in crystals of DL-norleucine. J Am Chem Soc 129:2542-2547. https://doi.org/10.1021/ja066686y [121] Chung H, Chen S, Sengar N, Davies DW, Garbay G, Geerts YH et al (2019) Single atom substitution alters the polymorphic transition mechanism in organic electronic crystals. Chem Mater 31:9115-9126. https://doi.org/10.1021/acs.chemmater.9b03436 [122] Wegner G (1969) Topochemical reactions of monomers with conjugated triple bonds. I. Polymerization of 2.4-hexadiyn-1.6-diols derivatives in crystalline state. Z Naturforsch B 24:824-826. https://doi.org/10.1515/znb-1969-0708 [123] Hasegawa M, Suzuki Y (1967) Four-center type photopolymerization in the solid state: Poly-2,5-distrylpyrazine. J Polym Sci Part B Polym Lett 5:813-815. https://doi.org/10.1002/pol.1967.110050915 [124] Zhou S, Zhang M, Yuan Y, Ren l, Chen Y, Li W et al (2024) Visible light [2 + 2] cycloadditions of thermoresponsive dendronized styryltriazines to exhibit tunable microconfinement. ACS Macro Lett 13:866-873. https://doi.org/10.1021/acsmacrolett.4c00259 [125] Yang S-Y, Naumov P, Fukuzumi S (2009) Topochemical limits for solid-state photoreactivity by fine tuning of the π-π interactions. J Am Chem Soc 131:7247-7249. https://doi.org/10.1021/ja902094b [126] Zhang X, Hou L, Samorì P (2016) Coupling carbon nanomaterials with photochromic molecules for the generation of optically responsive materials. Nat Commun 7:11118. https://doi.org/10.1038/ncomms11118 |
| [1] | Yixin Zhu, Qing Wan. Lithium niobate/lithium tantalate single-crystal thin films for post-moore era chip applications [J]. Moore and More, 2025, 1(1): 62-78. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||