[1] Huang S, Long H, Li J, Zhou Z (2024) Heterogeneous and hybrid integration system in display technology. Moore and More 1(1):2. https://doi.org/10.1007/s44275-024-00001-4 [2] Yang M, Huang J, Fan J, Du J, Pu K, Peng X (2020) Chemiluminescence for bioimaging and therapeutics: recent advances and challenges. Chem Soc Rev 49(19):6800-6815. https://doi.org/10.1039/D0CS00348D [3] Chang SZ, Zhong HX, Chen YH, Lin YH, Wang FX, Fu YM et al (2024) Multi-stimuli-responsive chromic switching self-assembled with polyoxometalate and copper-viologen frameworks. cMat 1(2):22. https://doi.org/10.1002/cmt2.22 [4] Li J, Li J, Zheng C, Yue Z, Wang S, Li M et al (2021) Free switch between bound states in the continuum (BIC) and quasi-BIC supported by graphene-metal terahertz metasurfaces. Carbon 182:506-515. https://doi.org/10.1016/j.carbon.2021.06.037 [5] Zhang X, Shi W, Gu J, Cong L, Chen X, Wang K et al (2022) Terahertz metasurface with multiple BICs/QBICs based on a split ring resonator. Opt Express 30(16):29088-29098. https://doi.org/10.1364/OE.462247 [6] Kupriianov AS, Xu Y, Sayanskiy A, Dmitriev V, Kivshar YS, Tuz VR (2019) Metasurface engineering through bound states in the continuum. Phys Rev Appl 12(1):014024. https://doi.org/10.1103/PhysRevApplied.12.014024 [7] Zhang H, Wang T, Tian J, Sun J, Li S, De Leon I et al (2022) Quasi-BIC laser enabled by high-contrast grating resonator for gas detection. Nanophotonics 11(2):297-304. https://doi.org/10.1515/nanoph-2021-0368 [8] Chakraborty D, Boni R, Mills BN, Cheng J, Komissarov I, Gerber SA et al (2024) High-density polyethylene custom focusing lenses for high-resolution transient terahertz biomedical imaging sensors. Sensors-Basel 24(7):2066. https://doi.org/10.3390/s24072066 [9] Siegel PH (2002) Terahertz technology. IEEE Trans Microw Theory Tech 50(3):910-928. https://doi.org/10.1109/22.989974 [10] Wang X, Wang X, Ren Q, Cai H, Xin J, Lang Y et al (2023) Polarization multiplexing multichannel high-Q terahertz sensing system. Front Nanotechnol 5:1112346. https://doi.org/10.3389/fnano.2023.1112346 [11] Melik-Gaykazyan E, Koshelev K, Choi JH, Kruk SS, Bogdanov A, Park HG et al (2021) From Fano to quasi-BIC resonances in individual dielectric nanoantennas. Nano Lett 21(4):1765-1771. https://doi.org/10.1021/acs.nanolett.0c04660 [12] Lu X, Zhang F, Zhu L, Peng S, Yan J, Shi Q et al (2024) A terahertz meta-sensor array for 2d strain mapping. Nat Commun 15(1):3157. https://doi.org/10.1038/s41467-024-47474-3 [13] Wu L, Jiang L, Xu Y, Ding X, Yao J (2013) Optical tuning of dielectric properties of Ba0.6Sr0.4TiO3-La(Mg0.5Ti0.5)O3 ceramics in the terahertz range. Appl Phys Lett 103(19). https://doi.org/10.1063/1.4829479 [14] Han S, Cong L, Srivastava YK, Qiang B, Rybin MV, Kumar A et al (2019) All-dielectric active terahertz photonics driven by bound states in the continuum. Adv Mater 31(37):1901921. https://doi.org/10.1002/adma.201901921 [15] Wang X, Wang X, Ren Q, Cai H, Xin J, Lang Y et al (2023) Temperature-controlled optical switch metasurface with large local field enhancement based on FW-BIC. Front Nanotechnol 5:1112100. https://doi.org/10.3389/fnano.2023.1112100 [16] Li Z, Xie M, Nie G, Wang J, Huang L (2023) Pushing optical virus detection to a single particle through a high-q quasi-bound state in the continuum in an all-dielectric metasurface. J Phys Chem Lett 14(48):10762-10768. https://doi.org/10.1021/acs.jpclett.3c02763 [17] Ren Q, Feng F, Yao X, Xu Q, Xin M, Lan Z et al (2021) Multiplexing-oriented plasmon-MoS2 hybrid metasurfaces driven by non-linear quasi bound states in the continuum. Opt Express 29(4):5384-5396. https://doi.org/10.1364/OE.414730 [18] Min X, Hao X, Chen Y, Liu M, Cheng X, Huang W et al (2024) Deep learning-enhanced prediction of terahertz response of metasurfaces. Opt Laser Technol 179:111321. https://doi.org/10.1016/j.optlastec.2024.111321 [19] Wang X, Wang X, Yao Z, Guo G, Jia Y, He Y et al (2023) Digital imaging through terahertz multifrequency programmable metasurface based on BIC. Opt Mater 143:114154. https://doi.org/10.1016/j.optmat.2023.114154 [20] Wang X, Wang X, Xin J, Li J, Ren Q, Cai H et al (2023) Tailoring the bound states in the multi-channel nonlinear plasmonic metasurfaces. Opt Commun 549:129834. https://doi.org/10.1016/j.optcom.2023.129834 [21] Wu L, Du T, Xu N, Ding C, Li H, Sheng Q et al (2016) A new Ba0.6Sr0.4TiO3-silicon hybrid metamaterial device in terahertz regime. Small 12(19):2610-2615. https://doi.org/10.1002/smll.201600276 [22] Ren H, Xu S, Lyu Z, Li Y, Yang Z, Xu Q et al (2024) Terahertz flexible multiplexing chip enabled by synthetic topological phase transitions. Natl Sci Rev:116. https://doi.org/10.1093/nsr/nwae116 [23] O’Hara JF, Ekin S, Choi W, Song I (2019) A perspective on terahertz next-generation wireless communications. Technologies 7(2):43. https://doi.org/10.3390/technologies7020043 [24] Chen Z, Han C, Wu Y, Li L, Huang C, Zhang Z et al (2021) Terahertz wireless communications for 2030 and beyond: A cutting-edge frontier. IEEE Commun Mag 59(11):66-72. https://doi.org/10.1109/MCOM.011.2100195 [25] Ren Q, Lang Y, Jia Y, Xiao X, Liu Y, Kong X et al (2024) High-Q metasurface signal isolator for 1.5 T surface coil magnetic resonance imaging on the go. Opt Express 32(6):8751-8762. https://doi.org/10.1364/OE.514806 [26] Wang L (2021) Terahertz imaging for breast cancer detection. Sensors 21(19):6465. https://doi.org/10.3390/s21196465 [27] Ding C, Wu L, Xu D, Yao J, Sun X (2016) Triple-band high Q factor Fano resonances in bilayer THz metamaterials. Opt Commun 370:116-121. https://doi.org/10.1016/j.optcom.2016.02.046 [28] Gul T, Khan A, Bilal M, Alreshidi NA, Mukhtar S, Shah Z et al (2020) Magnetic dipole impact on the hybrid nanofluid flow over an extending surface. Sci Rep 10(1):8474. https://doi.org/10.1038/s41598-020-65298-1 [29] Murai S, Abujetas DR, Castellanos GW, Sánchez-Gil JA, Zhang F, Rivas JG (2020) Bound states in the continuum in the visible emerging from out-of-plane magnetic dipoles. ACS Photonics 7(8):2204-2210. https://doi.org/10.1021/acsphotonics.0c00723 [30] Cheng SL, Wu HW, Yin YQ (2022) Ultrastrong purcell enhancement of magnetic dipole emission based on quasi-BIC. Eur Phys J D 76(11):211. https://doi.org/10.1140/epjd/s10053-022-00543-y [31] Lou J, Jiao Y, Yang R, Huang Y, Xu X, Zhang L et al (2022) Calibration-free, high-precision, and robust terahertz ultrafast metasurfaces for monitoring gastric cancers. Proc Natl Acad Sci USA 119(43):2209218119. https://doi.org/10.1073/pnas.2209218119 [32] Hao W, Sun G, Zeng M, Chu Z, Zhu Z, Dobre OA et al (2021) Robust design for intelligent reflecting surface-assisted MIMO-OFDMA terahertz IoT networks. IEEE Internet Things 8(16):13052-13064. https://doi.org/10.1109/JIOT.2021.3064069 [33] Gong M, Hu P, Song Q, Xiang H, Han D (2022) Bound states in the continuum from a symmetric mode with a dominant toroidal dipole resonance. Phys Rev A 105(3):033504. https://doi.org/10.1103/PhysRevA.105.033504 [34] Jha AK, Lamecki A, Mrozowski M (2023) Revisiting toroidal dipolar moment in planar metamaterial. IEEE Trans Microw Theory Tech 71(8):3508-3516. https://doi.org/10.1109/TMTT.2023.3284276 [35] Jin R, Huang L, Zhou C, Guo J, Fu Z, Chen J et al (2023) Toroidal dipole BIC-driven highly robust perfect absorption with a graphene-loaded metasurface. Nano Lett 23(19):9105-9113. https://doi.org/10.1021/acs.nanolett.3c02958 [36] Zhang Y, Wang L, He H, Duan H, Huang J, Gao C et al (2024) High-Q magnetic toroidal dipole resonance in all-dielectric metasurfaces. APL Photonics 9(7). https://doi.org/10.1063/5.0208936 [37] Van Hoof NJJ, Abujetas DR, Ter Huurne SET, Verdelli F, Timmermans GCA, Sánchez-Gil JA et al (2021) Unveiling the symmetry protection of bound states in the continuum with terahertz near-field imaging. ACS Photonics 8(10):3010-3016. https://doi.org/10.1021/acsphotonics.1c00937 [38] Romano S, Mangini M, Penzo E, Cabrini S, De Luca AC, Rendina I et al (2020) Ultrasensitive surface refractive index imaging based on quasi-bound states in the continuum. ACS Nano 14(11):15417-15427. https://doi.org/10.1021/acsnano.0c06050 [39] Guo L, Zhang Z, Xie Q, Li W, Xia F, Wang M et al (2023) Toroidal dipole bound states in the continuum in all-dielectric metasurface for high-performance refractive index and temperature sensing. Appl Surf Sci 615:156408. https://doi.org/10.1016/j.apsusc.2023.156408 [40] Wu L, Xu D, Wang Y, Liao B, Jiang Z, Zhao L et al (2019) Study of in vivo brain glioma in a mouse model using continuous-wave terahertz reflection imaging. Biomed Opt Express 10(8):3953-3962. https://doi.org/10.1364/BOE.10.003953 [41] Keshavarz A, Vafapour Z (2018) Water-based terahertz metamaterial for skin cancer detection application. IEEE Sens J 19(4):1519-1524. https://doi.org/10.1109/JSEN.2018.2882363 [42] Li D, Yang Z, Fu A, Chen T, Chen L, Tang M et al (2020) Detecting melanoma with a terahertz spectroscopy imaging technique. Spectrochimi Acta Part A 234:118229. https://doi.org/10.1016/j.saa.2020.118229 |