[1] Gao D, Li R, Chen X, Chen C, Wang C, Zhang B et al (2023) Managing interfacial defects and carriers by synergistic modulation of functional groups and spatial conformation for high-performance perovskite photovoltaics based on vacuum flash method. Adv Mater 35(23):e2301028. https://doi.org/10.1002/adma.202301028 [2] Zhang Z, Li M, Li R, Zhuang X, Wang C, Shang X et al (2024) Suppressing ion migration by synergistic engineering of anion and cation toward high-performance inverted perovskite solar cells and modules. Adv Mater 36(24):e2313860. https://doi.org/10.1002/adma.202313860 [3] Shen Y, Zhang T, Xu G, Steele JA, Chen X, Chen W et al (2024) Strain regulation retards natural operation decay of perovskite solar cells. Nature 635(8040):882-889. https://doi.org/10.1038/s41586-024-08161-x [4] Ding B, Ding Y, Peng J, Romano-deGea J, Frederiksen LEK, Kanda H et al (2024) Dopant-additive synergism enhances perovskite solar modules. Nature 628(8007):299-305. https://doi.org/10.1038/s41586-024-07228-z [5] Tan Q, Li Z, Luo G, Zhang X, Che B, Chen G et al (2023) Inverted perovskite solar cells using dimethylacridine-based dopants. Nature 620(7974):545-551. https://doi.org/10.1038/s41586-023-06207-0 [6] Zhu L, Zhang X, Li M, Shang X, Lei K, Zhang B et al (2021) Trap state passivation by rational ligand molecule engineering toward efficient and stable perovskite solar cells exceeding 23% efficiency. Adv Energy Mater 11(20):2100529. https://doi.org/10.1002/aenm.202100529 [7] Martiradonna L (2018) Riddles in perovskite research. Nat Mater 17(5):377-384. https://doi.org/10.1038/s41563-018-0072-y [8] Chen B, Rudd PN, Yang S, Yuan Y, Huang J (2019) Imperfections and their passivation in halide perovskite solar cells. Chem Soc Rev 48(14):3842-3867. https://doi.org/10.1039/C8CS00853A [9] Liu B, Ren X, Li R, Chen Y, He D, Li Y et al (2024) Stabilizing top interface by molecular locking strategy with polydentate chelating biomaterials toward efficient and stable perovskite solar cells in ambient air. Adv Mater 36(19):e2312679. https://doi.org/10.1002/adma.202312679 [10] Akin S, Arora N, Zakeeruddin SM, Grätzel M, Friend RH, Dar MI (2020) New strategies for defect passivation in high-efficiency perovskite solar cells. Adv Energy Mater 10(13):1903090. https://doi.org/10.1002/aenm.201903090 [11] Kim Y, Jung EH, Kim G, Kim D, Kim BJ, Seo J (2018) Sequentially fluorinated PTAA polymers for enhancing VOC of high-performance perovskite solar cells. Adv Energy Mater 8(29):1801668. https://doi.org/10.1002/aenm.201801668 [12] Li C, Song Z, Chen C, Xiao C, Subedi B, Harvey SP et al (2020) Low-bandgap mixed tin-lead iodide perovskites with reduced methylammonium for simultaneous enhancement of solar cell efficiency and stability. Nat Energy 5(10):768-776. https://doi.org/10.1038/s41560-020-00692-7 [13] Park B-w, Kedem N, Kulbak M, Lee DY, Yang WS, Jeon NJ et al (2018) Understanding how excess lead iodide precursor improves halide perovskite solar cell performance. Nat Communs 9(1):3301. https://doi.org/10.1038/s41467-018-05583-w [14] Zhao X, Liu T, Burlingame QC, Liu T, Holley R, Cheng G et al (2022) Accelerated aging of all-inorganic, interface-stabilized perovskite solar cells. Science 377(6603):307-310. https://doi.org/10.1126/science.abn5679 [15] Zhao Y, Ma F, Qu Z, Yu S, Shen T, Deng H-X et al (2022) Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science 377(6605):531-534. https://doi.org/10.1126/science.abp8873 [16] Chen J, Park N-G (2020) Materials and methods for interface engineering toward stable and efficient perovskite solar cells. ACS Energy Lett 5(8):2742-2786. https://doi.org/10.1021/acsenergylett.0c01240 [17] Christians JA, Schulz P, Tinkham JS, Schloemer TH, Harvey SP, Tremolet de Villers BJ et al (2018) Tailored interfaces of unencapsulated perovskite solar cells for >1,000 hour operational stability. Nat Energy 3(1):68-74. https://doi.org/10.1038/s41560-017-0067-y [18] Li H, Zhang C, Gong C, Zhang D, Zhang H, Zhuang Q et al (2023) 2D/3D heterojunction engineering at the buried interface towards high-performance inverted methylammonium-free perovskite solar cells. Nat Energy 8:1-10. https://doi.org/10.1038/s41560-023-01295-8 [19] Chin XY, Turkay D, Steele JA, Tabean S, Eswara S, Mensi M et al (2023) Interface passivation for 31.25%-efficient perovskite/silicon tandem solar cells. Science 381(6653):59-63. https://doi.org/10.1126/science.adg0091 [20] Li C, Wang X, Bi E, Jiang F, Park SM, Li Y et al (2023) Rational design of Lewis base molecules for stable and efficient inverted perovskite solar cells. Science 379(6633):690-694. https://doi.org/10.1126/science.ade3970 [21] He Z, Zhang Z, Ding J, Gao W, Li M, Chen C (2024) Managing Pb-related imperfections via rationally designed aniline derivative with bilateral cyano and acetyl groups as Lewis base for high-efficiency perovskite solar cells exceeding 24%. Small 20(42):e2404334. https://doi.org/10.1002/smll.202404334 [22] Petrus ML, Schutt K, Sirtl MT, Hutter EM, Closs AC, Ball JM et al (2018) New generation hole transporting materials for perovskite solar cells: amide-based small-molecules with nonconjugated backbones. Adv Energy Mater 8(32):1801605. https://doi.org/10.1002/aenm.201801605 [23] Xu D, Wang J, Duan Y, Yang S, Zou H, Yang L et al (2023) Highly-stable CsPbI3 perovskite solar cells with an efficiency of 21.11% via fluorinated 4-amino-benzoate cesium bifacial passivation. Adv Funct Mater 33(44):2304237. https://doi.org/10.1002/adfm.202304237 [24] Chen C, Zhu Y, Gao D, Li M, Zhang Z, Chen H et al (2023) Molecular synergistic passivation for efficient perovskite solar cells and self-powered photodetectors. Small 19(32):e2303200. https://doi.org/10.1002/smll.202303200 [25] Chen C, Zhang Z, Wang C, Geng T, Feng Y, Ding J et al (2024) Synchronous regulation strategy of pyrrolidinium thiocyanate enables efficient perovskite solar cells and self-powered photodetectors. Small 20(26):e2311377. https://doi.org/10.1002/smll.202311377 [26] Zhang K, Deng Y, Shi X, Li X, Qi D, Jiang B et al (2022) Interface chelation induced by pyridine-based polymer for efficient and durable air-processed perovskite solar cells. Angew Chem Int Ed Engl 61(4):e202112673. https://doi.org/10.1002/anie.202112673 [27] Zhao X, Zhang P, Liu T, Tian B, Jiang Y, Zhang J et al (2024) Operationally stable perovskite solar modules enabled by vapor-phase fluoride treatment. Science 385(6707):433-438. https://doi.org/10.1126/science.adn9453 [28] Fu S, Li X, Wan L, Wu Y, Zhang W, Wang Y et al (2019) Efficient passivation with lead pyridine-2-carboxylic for high-performance and stable perovskite solar cells. Adv Energy Mater 9(35):1901852. https://doi.org/10.1002/aenm.201901852 [29] Li X, Dar MI, Yi C, Luo J, Tschumi M, Zakeeruddin SM et al (2015) Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides. Nat Chem 7(9):703-711. https://doi.org/10.1038/nchem.2324 [30] Zheng H, Liu G, Wu W, Xu H, Pan X (2021) Highly efficient and stable perovskite solar cells with strong hydrophobic barrier via introducing poly(vinylidene fluoride) additive. J Energy Chem 57:593-600. https://doi.org/10.1016/j.jechem.2020.09.026 [31] Dong H, Shen G, Lin Z, Cai Q, Li Y, Xu X et al (2022) Bifunctional interfacial regulation with 4-(trifluoromethyl) benzoic acid to reduce the photovoltage deficit of MAPbI3-based perovskite solar cells. ChemNanoMat 8(3):e202100475. https://doi.org/10.1002/cnma.202100475 [32] Ding X, Wang H, Miao Y, Chen C, Zhai M, Yang C et al (2022) Bi(trifluoromethyl) benzoic acid-assisted shallow defect passivation for perovskite solar cells with an efficiency exceeding 21%. ACS Appl Mater Interfaces 14(3):3930-3938. https://doi.org/10.1021/acsami.1c18035 [33] Chiu P-H, Hu C-T, Chia S-K, Su L-Y, Chen P-T, Liu Z-Y et al (2024) Synergistic enhancement of stability and performance for perovskite solar cells using fluorinated benzoic acids as additives. Solar RRL 8(7):2300902. https://doi.org/10.1002/solr.202300902 [34] Liu C, Zhang J, Zhang L, Zhou X, Liu Y, Wang X et al (2022) Bifunctional passivation through fluoride treatment for highly efficient and stable perovskite solar cells. Adv Energy Mater 12(30):2200945. https://doi.org/10.1002/aenm.202200945 [35] Yang J, Liu C, Cai C, Hu X, Huang Z, Duan X et al (2019) High-performance perovskite solar cells with excellent humidity and thermo-stability via fluorinated perylenediimide. Adv Energy Mater 9(18):1900198. https://doi.org/10.1002/aenm.201900198 [36] Kang Z, Si H, Shi M, Xu C, Fan W, Ma S et al (2019) Kelvin probe force microscopy for perovskite solar cells. Sci China Mater 62(6):776-789. https://doi.org/10.1007/s40843-018-9395-y [37] Ye S, Rao H, Feng M, Xi L, Yen Z, Seng DHL et al (2023) Expanding the low-dimensional interface engineering toolbox for efficient perovskite solar cells. Nat Energy 8(3):284-293. https://doi.org/10.1038/s41560-023-01204-z |