Moore and More ›› 2025, Vol. 1 ›› Issue (4): 339-355.DOI: 10.1007/s44275-024-00010-3
• Review • Previous Articles Next Articles
Linqing Qiu, Qiang Lv, Xuedong Wang
Received:2024-04-30
Revised:2024-06-05
Accepted:2024-08-05
Online:2025-11-29
Published:2024-11-08
Contact:
Qiang Lv,E-mail:lvqiang111@suda.edu.cn;Xuedong Wang,E-mail:wangxuedong@suda.edu.cn
Linqing Qiu, Qiang Lv, Xuedong Wang
通讯作者:
Qiang Lv,E-mail:lvqiang111@suda.edu.cn;Xuedong Wang,E-mail:wangxuedong@suda.edu.cn
作者简介:Linqing Qiu is now pursuing for undergraduate degree under the supervision of Prof. Xue-Dong Wang in FUNSOM of Soochow University. His current research interest is about organic low-dimensional multiblock heterostructures and the iroptoe lectronic applications.Linqing Qiu, Qiang Lv, Xuedong Wang. Low-dimensional organic semiconductor crystals for advanced photonics[J]. Moore and More, 2025, 1(4): 339-355.
Linqing Qiu, Qiang Lv, Xuedong Wang. Low-dimensional organic semiconductor crystals for advanced photonics[J]. Moore and More, 2025, 1(4): 339-355.
Add to citation manager EndNote|Ris|BibTeX
| [1] Solli DR, Jalali B (2015) Analog optical computing. Nature Photon 9:704-706. https://doi.org/10.1038/nphoton.2015.208 [2] Cristiani I, Lacava C, Rademacher G, Puttnam BJ, Luìs RS, Antonelli C et al (2022) Roadmap on multimode photonics. J Opt 24:083001. https://doi.org/10.1088/2040-8986/ac7a48 [3] Bogaerts W, Perez D, Capmany J, Miller D, Poon J, Englund D et al (2020) Programmable photonic circuits. Nature 586:207-216. https://doi.org/10.1038/s41586-020-2764-0 [4] Kumar AV, Godumala M, Ravi J, Chandraseka R (2022) A broadband, multiplexed-visible-light-transport in composite flexible-organic-crystal waveguide. Angew Chem Int Ed 61:e202212382. https://doi.org/10.1002/anie.202212382 [5] Ravi J, Chandrasekar R (2021) Micromechanical fabrication of resonator waveguides integrated four-port photonic circuit from flexible organic single crystals. Adv Optical Mater 9:2100550. https://doi.org/10.1002/adom.202100550 [6] Annadhasan M, Agrawal AR, Bhunia S, Pradeep VV, Zade SS, Reddy CM et al (2020) Mechanophotonics: flexible single-crystal organic waveguides and circuits. Angew Chem Int Ed 59:13852-13858. https://doi.org/10.1002/anie.202003820 [7] Liao Q, Xu ZZ, Zhong XL, Dang W, Shi Q, Zhang C et al (2014) An organic nanowire waveguide exciton-polariton sub-microlaser and its photonic application. J Mater Chem C 2:2773-2778. https://doi.org/10.1039/C3TC32474E [8] Liu Z, Xu J, Chen D, Shen G (2015) Chem Soc Rev 44:1618. Liu Z, Xu J, Chen D, Shen GZ. (2015) Flexible electronics based on inorganic nanowires. Chem Soc Rev 44:161-192. https://doi.org/10.1039/C4CS00116H [9] Liu X, Long YZ, Liao L, Duan XF, Fan ZY (2012) Large-scale integration of semiconductor nanowires for high-performance flexible electronics. ACS Nano 6:1888-1900. https://doi.org/10.1021/nn204848r [10] Rackauskas S, Barbero N, Barolo C, Viscardi G (2017) ZnO nanowire application in chemoresistive sensing: a review. Nanomaterials 7:381. https://doi.org/10.3390/nano7110381 [11] Fang HH, Yang J, Feng J, Yamao T, Hotta S, Sun HB (2014) Functional organic single crystals for solid-state laser applications. LaserPhotonics Rev 8:687-715. https://doi.org/10.1002/lpor.201300222 [12] Garcia-Frutos EM. (2013) Small organic single-crystalline one-dimensional micro- and nanostructures for miniaturized devices. J Mater Chem C 1:3633-3645. https://doi.org/10.1039/C3TC30143E [13] Quan LN, Kang J, Ning CZ, Yang PD (2019) Nanowires for photonics. Chem Rev 119:9153-9169. https://doi.org/10.1021/acs.chemrev.9b00240 [14] Min SY, Kim TS, Lee Y, Cho H, Xu WT, Lee TW (2015) Organic nanowire fabrication and device applications. Small 11:45-62. https://doi.org/10.1002/smll.201401487 [15] Zhu HM, Fu YP, Meng F, Wu XX, Gong ZZ, Ding Q et al (2015) Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat Mater 14:636-642. https://doi.org/10.1038/nmat4271 [16] Clark J, Lanzani G (2010) Organic photonics for communications. Nat Photonics 4:438-446. https://doi.org/10.1038/nphoton.2010.160 [17] Chandrasekar R (2022) Mechanophotonics-a guide to integrating microcrystals toward monolithic and hybrid all-organic photonic circuits. Chem Commun 58:3415-3428 https://doi.org/10.1039/D2CC00044J [18] Pradeep VV, Tardio C, Torres-Moya I, Rodríguez AM, Kumar AV, Annadhasan M et al (2021) Mechanical processing of naturally bent organic crystalline microoptical waveguides and junctions. Small 17:2006795. https://doi.org/10.1002/smll.202006795 [19] Lv Q, Wang XD (2022) Low-dimensional organic structures with hierarchical components for advanced photonics. Sci Bull 67:991994. https://doi.org/10.1016/j.scib.2022.04.005 [20] Zhuo MP, Fei XY, Tao YC, Fan J, Wang XD, Xie WF et al (2019) In situ construction of one-dimensional component-interchange organic core/shell microrods for multicolor continuous-variable optical waveguide. ACS Appl Mater Interfaces 11:5298-5305. https://doi.org/10.1021/acsami.8b22317 [21] Yu Y, Li ZZ, Wu JJ, Wei GQ, Tao YC, Pan ML et al (2019) Transformation from nonlasing to lasing in organic solid-state through the cocrystal engineering. ACS Photonics 6:1798-1803. https://doi.org/10.1021/acsphotonics.9b00606 [22] Zhuo MP, He GP, Yuan Y, Tao YC, Wei GQ, Wang XD et al (2020) CCS Chem 2:413-424. https://doi.org/10.31635/ccschem.020.202000171 [23] Lu XM, Wang XD, Liao Q, Fu HB (2015) Controlled self-assembly of organic microcrystals for laser applications. J Phys Chem C 119:22108-22113. https://doi.org/10.1021/acs.jpcc.5b06063 [24] Wang J, Zhao YF, Zhang JH, Zhang JY, Yang B, Wang Y et al (2007) Assembly of one-dimensional organic luminescent nanowires based on quinacridone derivatives. J Phys Chem C 111:9177-9183. https://doi.org/10.1021/jp072488x [25] Wu JJ, Gao HF, Lai R, Zhuo MP, Feng JG, Wang XD et al (2020) Near-infrared organic single-crystal nanolaser arrays activated by excited-state intramolecular proton transfer. Matter 2:1233-1243. https://doi.org/10.1016/j.matt.2020.01.023 [26] Wang XD, Li ZZ, Zhuo MP, Wu Y, Chen S, Yao JN et al (2017) Tunable near-infrared organic nanowire nanolasers. Adv Funct Mater 27:1703470. https://doi.org/10.1002/adfm.20170347 [27] Feng JG, Jiang XY, Yan XX, Wu YC, Su B, Fu HB et al (2017) “Capillary-bridge lithography” for patterning organic crystals toward mode-tunable microlaser arrays. Adv Mater 29:1603652. https://doi.org/10.1002/adma.201603652 [28] Xu ZZ, Liao Q, Shi Q, Zhang H, Yao JN, Fu HB (2012) Low-threshold nanolasers based on slab-nanocrystals of H-aggregated organic semiconductors. Adv Mater 24:216-220. https://doi.org/10.1002/adma.201201579 [29] Grosshans F, Van Assche G, Wenger J, Brouri R, Cerf NJ, Grangier P (2003) Quantum key distribution using gaussian-modulated coherent states. Nature 421:238-241. https://doi.org/10.1038/nature01289 [30] Bisri SZ, Takenobu T, Iwasa Y (2014) The pursuit of electrically-driven organic semiconductor lasers. J Mater Chem C 2:2827-2836. https://doi.org/10.1039/C3TC32206H [31] Ou Q, Peng Q, Shuai ZG (2020) Computational screen-out strategy for electrically pumped organic laser materials. Nat Commun 11:4485. https://doi.org/10.1038/s41467-020-18144-x [32] Li YJ, Yan Y, Zhao YS, Yao JN (2016) Construction of nanowire heterojunctions: photonic function-oriented nanoarchitectonics. Adv Mater 28:1319-1326. https://doi.org/10.1002/adma.201502577 [33] Li YJ, Hong Y, Peng Q, Yao JN, Zhao YS (2017) Orientation-dependent exciton-plasmon coupling in embedded organic/metal nanowire heterostructures. ACS Nano 11:10106-10112. https://doi.org/10.1021/acsnano.7b04584 [34] Torii K, Higuchi T, Mizuno K, Bando K, Yamashita K, Sasaki F et al (2017) Organic nanowire lasers with epitaxially grown crystals of semiconducting oligomers. Chem Nanomater 3:625-631. https://doi.org/10.1002/cnma.201700137 [35] O’Carroll D, Lieberwirth I, Redmond G (2007) Microcavity effects and optically pumped lasing in single conjugated polymer nanowires. Nat Nanotechnol 2:180-184. https://doi.org/10.1038/nnano.2007.35 [36] Yu ZY, Wu YS, Xiao L, Chen JW, Liao Q, Yao JN et al (2017) Organic phosphorescence nanowire lasers. J Am Chem Soc 139:6376-6381. https://doi.org/10.1021/jacs.7b01574 [37] Wu JJ, Wang XD, Liao LS (2022) Advances in energy-level systems of organic lasers. Laser Photonics Rev 16:2200366. https://doi.org/10.1002/lpor.202200366 [38] Hill MT, Gather MC (2014) Advances in small lasers. Nat Photonics 8:908-918. https://doi.org/10.1038/nphoton.2014.239 [39] Zhao YS, Fu HB, Peng AD, Ma Y, Liao Q, Yao JN (2010) Construction and optoelectronic properties of organic one-dimensional nanostructures. Acc Chem Res 43:409-418. https://doi.org/10.1021/ar900219n [40] Mizuno H, Maeda T, Yanagi H, Katsuki H, Aresti M, Quochi F et al (2014) Optically pumped lasing from single crystals of a cyano-substituted thiophene/phenylene co-oligomer. Adv Opt Mater 2:529-534. https://doi.org/10.1002/adom.201400083 [41] Mizuno H, Haku U, Marutani Y, Ishizumi A, Yanagi H, Sasaki F et al (2012) Single crystals of 5,5'-bis(4'-methoxybiphenyl-4-yl)-2,2'-bithiophene for organic laser media. Adv Mater 24:5744-5749. https://doi.org/10.1002/adma.201202470 [42] Chen S, Wang XD, Zhuo MP, Wei GQ, Wu JJ, Liao LS (2021) Single-crystal organic heterostructure for single-mode unidirectional whispering-gallery-mode laser. Adv Optical Mater 10:2101931. https://doi.org/10.1002/adom.202101931 [43] Zhang C, Zou CL, Zhao Y, Dong CH, Wei C, Wang HL et al (2015) Organic printed photonics: from microring lasers to integrated circuits. Sci Adv 1:e1500257. https://doi.org/10.1126/sciadv.1500257 [44] Shao LB, Jiang XF, Yu XC, Li BB, Clements WR, Vollmer F et al (2013) Detection of single nanoparticles and lentiviruses using microcavity resonance broadening. Adv Mater 26:991-991. https://doi.org/10.1002/adma.201400142 [45] O’Carroll D, Redmond G (2008) Polyfluorene nanowire active waveguides as sub-wavelength polarized light sources. Phys E 40:2468-2473. https://doi.org/10.1016/j.physe.2007.10.009 [46] Cui QH, Peng Q, Luo Y, Jiang YQ, Yan YL, Wei C et al (2018) Asymmetric photon transport in organic semiconductor nanowires through electrically controlled exciton diffusion. Sci Adv 4:eaap9861. https://doi.org/10.1126/sciadv.aap9861 [47] Annadhasan M, Basak S, Chandrasekhar N, Chandrasekar R (2020) Next-generation organic photonics: the emergence of flexible crystal optical waveguides. Adv Opt Mater 8:2000959. https://doi.org/10.1002/adom.202000959 [48] Ma YX, Xu CF, Mao XR, Wu Y, Yang J, Xu LP et al (2023) Oriented self-assembly of hierarchical branch organic crystals for asymmetric photonics. J AM Chem Soc 145:9285-9291. https://doi.org/10.1021/jacs.3c02061 [49] Wu B, Zheng M, Zhuo MP, Zhao YD, Su Y, Fan JZ et al (2023) Organic bilayer heterostructures with built-in exciton conversion for 2D photonic encryption. Adv Mater 35:2306541. https://doi.org/10.1002/adma.202306541 [50] Law M, Sirbuly DJ, Johnson JC, Goldberger J, Saykally RJ, Yang P (2004) Nanoribbon waveguides for subwavelength photonics integration. Science 305:1269-1273. https://doi.org/10.1126/science.1100999 [51] Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B et al (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15:353-389. https://doi.org/10.1002/adma.200390087 [52] Kang KT, Park J, Suh D, Choi WS (2019) Synergetic behavior in 2D layered material/complex oxide heterostructures. Adv Mater 31:1803732. https://doi.org/10.1002/adma.201803732 [53] Liang S-J, Cheng B, Cui X, Miao F (2020) Van der waals heterostructures for high-performance device applications: challenges and opportunities. Adv Mater 32:1903800. https://doi.org/10.1002/adma.201903800 [54] Wu JK, Li Q, Xue GB, Chen HZ, Li HY (2017) Preparation of single-crystalline heterojunctions for organic electronics. Adv Mater 29:1606101. https://doi.org/10.1002/adma.201606101 [55] Lezama IG, Nakano M, Minder NA, Chen Z, Di Girolamo FV et al (2012) Single-crystal organic charge-transfer interfaces probed using Schottky-gated heterostructures. Nat Mater 11:788-794. https://doi.org/10.1038/nmat3383 [56] Li HB, Wu JK, Takahashi K, Ren J, Wu RH, Cai HY et al (2019) Organic heterojunctions formed by interfacing two single crystals from a mixed solution. J Am Chem Soc 141:10007-10015. https://doi.org/10.1021/jacs.9b03819 [57] Yan Y, Zhang C, Zheng JY, Yao J, Zhao YS (2012) Optical modulation based on direct photon-plasmon coupling in organic/metal nanowire heterojunctions. Adv Mater 24:5681-5686. https://doi.org/10.1002/adma.201202698 [58] Kong QH, Liao Q, Xu ZZ, Wang XD, Yao JN, Fu HB (2014) Epitaxial self-assembly of binary molecular components into branched nanowire heterostructures for photonic applications. J Am Chem Soc 136:2382-2388. https://doi.org/10.1021/ja410069k [59] Zheng JY, Yan YL, Wang XD, Zhao YS, Huang JX, Yao JN (2012) Wire-on-wire growth of fluorescent organic heterojunctions. J Am Chem Soc 134:2880-2883. https://doi.org/10.1021/ja209815f [60] Chen S, Wang XD, Zhuo MP, Wei GQ, Wu JJ, Liao LS (2022) Single-crystal organic heterostructure for single-mode unidirectional whispering-gallery-mode laser. Adv Opt Mater 10:2101931 [61] Pardeep VV, Chandraseka R (2022) Micromanufacturing of geometrically and dimensionally precise molecular single-crystal photonic microresonators via focused ion beam milling. Adv Optical Mater 10:2201150. https://doi.org/10.1002/adom.202201150 [62] Pardeep VV, Chosenyah M, Mamonov E Chandrasekar R (2023) Crystal photonics foundry: geometrical shaping of molecular single crystals into next generation optical cavities. Nanoscale 15:12220-12226. https://doi.org/10.1039/D3NR02229C [63] Pardeep VV, Kumar AV, Chandrasekar R (2023) A tandem approach to fabricate a hybrid, organic-add-drop filter using single-crystal disk-resonators and pseudo-plastic crystal waveguides. Laser Photonics Rev 17:2300552. https://doi.org/10.1002/lpor.202300552 [64] Zhuo MP, Wu JJ, Wang XD, Tao YC, Yuan Y, Liao LS (2019) Hierarchical self-assembly of organic heterostructure nanowires. Nat Commun 10:3839. https://doi.org/10.1038/s41467-019-11731-7 [65] Zhu WG, Zheng RH, Zhen YG, Yu ZY, Dong HL, Fu HB et al (2015) Rational design of charge-transfer interactions in halogen-bonded co-crystals toward versatile solid-state optoelectronics. J Am Chem Soc 137:11038-11046. https://doi.org/10.1021/jacs.5b05586 [66] Kagarise RE (1995) Spectroscopic studies on the soaps of phenylstearic acid. I. infrared absorption spectra and the hydrolysis of soap films. J Phys Chem 59:271-277. https://doi.org/10.1021/J150525A019 [67] Zhuo MP, Su Y, Qu YK, Chen S, He GP, Yuan Y et al (2021) Hierarchical self-assembly of organic core/multi-shell microwires for trichromatic white-light sources. Adv Mater 33:2102719. https://doi.org/10.1002/adma.202102719 [68] Ge Z, Xu N, Zhu Y, Zhao K, Ma Y, Li G et al (2022) Visible to mid-infrared photodetection based on flexible 3D graphene/organic hybrid photodetector with ultrahigh responsivity at ambient conditions. ACS Photonics 9:59-67. https://doi.org/10.1021/acsphotonics.1c01690 [69] Huang JF, Lee J, Vollbrecht J, Brus VV, Dixon AL, Cao DX et al (2020) A high-performance solution-processed organic photodetector for near-infrared sensing. Adv Mater 32:1906027. https://doi.org/10.1002/adma.201906027 [70] Park S, Fukuda K, Wang M, Lee C, Yokota T, Jin H et al (2018) Ultraflexible near-infrared organic photodetectors for conformal photoplethysmogram sensors. Adv Mater 30:1802359. https://doi.org/10.1002/adma.201802359 [71] Zhang XJ, Jie JS, Deng W, Shang QX, Wang JC, Wang H et al (2016) Alignment and patterning of ordered small-molecule organic semiconductor micro-/nanocrystals for device applications. Adv Mater 28:2475-2503. https://doi.org/10.1002/adma.201504206 [72] Baeg KJ, Binda M, Natali D, CaironiMand Noh YY (2013) Organic light detectors: photodiodes and phototransistors. Adv Mater 25:4267-4295. https://doi.org/10.1002/adma.201204979 [73] Dong HL, Zhu HF, Meng Q, Gong X, Hu WP (2012) Organic photoresponse materials and devices. Chem Soc Rev 41:1754-1808. https://doi.org/10.1039/C1CS15205J [74] Wu G, Chen C, Liu S, Fan CC, Li HY, Chen HZ (2015) Solution-grown organic single-crystal field-effect transistors with ultrahigh response to visible-blind and deep UV signals. Adv Electron Mater 1:1500136. https://doi.org/10.1002/aelm.201500136 [75] Smithson CS, Wu YL, Wigglesworth T, Zhu SP (2014) A more than six orders of magnitude UV-responsive organic field-effect transistor utilizing a benzothiophene semiconductor and disperse red 1 for enhanced charge separation. Adv Mater 27:228-233. https://doi.org/10.1002/adma.201404193 [76] Kim KH, Bae SY, Kim YS, Hur JA, Hoang MH, Lee TW et al (2011) Highly photosensitive J-aggregated single-crystalline organic transistors. Adv Mater 23:3095-3099. https://doi.org/10.1002/adma.201100944 [77] Tseng CW, Huang DC, Tao YT (2012) Electric bistability induced by incorporating self-assembled monolayers/aggregated clusters of azobenzene derivatives in pentacene-based thin-film transistors. Appl ACS Mater Interfaces 4:5483-8491. https://doi.org/10.1021/am3013906 [78] Dutta S, Narayan KS (2004) Gate-voltage control of optically- induced charges and memory effects in polymer field-effect transistors. Adv Mater 16:2151-2155. https://doi.org/10.1002/adma.200400084 [79] Queisser HJ, Theodorou DE (1986) Decay kinetics of persistent photoconductivity in semiconductors. Phys Rev B 33:4027-4033. https://doi.org/10.1103/physrevb.33.4027 [80] Tyo JS, Goldstein DL, Chenault DB, Shaw JA (2006) Review of passive imaging polarimetry for remote sensing applications. Appl Opt 45:5453-5469. https://doi.org/10.1364/AO.45.005453 [81] Liu FC, Zheng SJ, He XX, Chaturvedi A, He JF, Chow WL et al (2016) Highly sensitive detection of polarized light using anisotropic 2D reS2. Adv Funct Mater 26:1169-1177. https://doi.org/10.1002/adfm.201504546 [82] Wang TY, Zhao K, Wang PW, Shen WF, Gao HK, Qin ZS et al (2022) Intrinsic linear dichroism of organic single crystals toward high-performance polarization-sensitive photodetectors. Adv Mater 34:2105665. https://doi.org/10.1002/adma.202105665 [83] Wang XT, Li YT, Huang L, Jiang XW, Jiang L, Dong HL et al (2017) Short-wave near-infrared linear dichroism of two-dimensional germanium selenide. J Am Chem Soc 139:14976-14982. https://doi.org/10.1021/jacs.7b06314 |
| No related articles found! |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||