Moore and More ›› 2025, Vol. 1 ›› Issue (4): 356-369.DOI: 10.1007/s44275-024-00020-1
• Review • Previous Articles Next Articles
Yi Yang1,2, Hui Li1,2, Zhen Xu1,2, Siyi Luo1,2, Lidong Chen1,2
Received:2024-10-10
Revised:2024-11-29
Accepted:2024-12-03
Online:2025-11-29
Published:2025-02-17
Contact:
Hui Li,E-mail:lihui889@mail.sic.ac.cn;Lidong Chen,E-mail:cld@mail.sic.ac.cn
Supported by:Yi Yang1,2, Hui Li1,2, Zhen Xu1,2, Siyi Luo1,2, Lidong Chen1,2
通讯作者:
Hui Li,E-mail:lihui889@mail.sic.ac.cn;Lidong Chen,E-mail:cld@mail.sic.ac.cn
作者简介:Yi Yang Yi Yang graduated with her B.Eng. degree from Donghua University in 2023. She is now pursuing her Master’s degree at the Shanghai Institute of Ceramics, Chinese Academy of Sciences. Her current research direction is the design, synthesis, and application of polymer thermoelectric materials.基金资助:Yi Yang, Hui Li, Zhen Xu, Siyi Luo, Lidong Chen. Wearable self-powered devices based on polymer thermoelectric materials[J]. Moore and More, 2025, 1(4): 356-369.
Yi Yang, Hui Li, Zhen Xu, Siyi Luo, Lidong Chen. Wearable self-powered devices based on polymer thermoelectric materials[J]. Moore and More, 2025, 1(4): 356-369.
Add to citation manager EndNote|Ris|BibTeX
| [1] Seebeck TJ (1826) Ueber die magnetische polarisation der metalle und erze durch temperatur-differenz. Ann Phys 82:133-160. https://doi.org/10.1002/andp.18260820202 [2] Shi X-L, Zou J, Chen Z-G (2020) Advanced thermoelectric design: From materials and structures to devices. Chem Rev 120:7399-7515. https://doi.org/10.1021/acs.chemrev.0c00026 [3] Wang Z, Leonov V, Fiorini P, Van Hoof C (2009) Realization of a wearable miniaturized thermoelectric generator for human body applications. Sens Actuators A Phys 156:95-102. https://doi.org/10.1016/j.sna.2009.02.028 [4] DiSalvo FJ (1999) Thermoelectric cooling and power generation. Science 285:703-706. https://doi.org/10.1126/science.285.5428.703 [5] Wang H, Yu C (2019) Organic thermoelectrics: Materials preparation, performance optimization, and device integration. Joule 3:53-80. https://doi.org/10.1016/j.joule.2018.10.012 [6] Russ B, Glaudell A, Urban JJ, Chabinyc ML, Segalman RA (2016) Organic thermoelectric materials for energy harvesting and temperature control. Nat Rev Mater 1:16050. https://doi.org/10.1038/natrevmats.2016.50 [7] Peterson KA, Thomas EM, Chabinyc ML (2020) Thermoelectric properties of semiconducting polymers. Annu Rev Mater Res 50:551-574. https://doi.org/10.1146/annurev-matsci-082219-024716 [8] Song Y, Dai X, Zou Y, Li C, Di C-a, Zhang D et al (2023) Boosting the thermoelectric performance of the doped DPP-EDOT conjugated polymer by incorporating an ionic additive. Small 19:2300231. https://doi.org/10.1002/smll.202300231 [9] Wang D, Ding J, Dai X, Xiang L, Ye D, He Z et al (2023) Triggering ZT to 0.40 by engineering orientation in one polymeric semiconductor. Adv Mater 35:2208215. https://doi.org/10.1002/adma.202208215 [10] Bundgaard E, Hagemann O, Bjerring M, Nielsen NC, Andreasen JW, Andreasen B et al (2012) Removal of solubilizing side chains at low temperature: A new route to native poly(thiophene). Macromolecules 45:3644-3646. https://doi.org/10.1021/ma300075x [11] Li CA, Shan C, Luo D, Gu X, Le Q, Kyaw AKK et al (2024) Great enhancement in the seebeck coefficient of PEDOT:PSS by polaron level splitting via π-π overlapping with nonpolar small aromatic molecules. Adv Funct Mater 34:2311578. https://doi.org/10.1002/adfm.202311578 [12] Kiefer D, Kroon R, Hofmann AI, Sun H, Liu X, Giovannitti A et al (2019) Double doping of conjugated polymers with monomer molecular dopants. Nat Mater 18:149-155. https://doi.org/10.1038/s41563-018-0263-6 [13] Guchait S, Dash A, Lemaire A, Herrmann L, Kemerink M, Brinkmann M (2024) Phase-selective doping of oriented regioregular poly(3-hexylthiophene-2,5-diyl) controls stability of thermoelectric properties. Adv Funct Mater n/a:2404411. https://doi.org/10.1002/adfm.202404411 [14] Lim E, Peterson KA, Su GM, Chabinyc ML (2018) Thermoelectric properties of poly(3-hexylthiophene) (P3HT) doped with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) by vapor-phase infiltration. Chem Mater 30:998-1010. https://doi.org/10.1021/acs.chemmater.7b04849 [15] Scholes DT, Yee PY, McKeown GR, Li S, Kang H, Lindemuth JR et al (2019) Designing conjugated polymers for molecular doping: The roles of crystallinity, swelling, and conductivity in sequentially-doped selenophene-based copolymers. Chem Mater 31:73-82. https://doi.org/10.1021/acs.chemmater.8b02648 [16] Yoon SE, Kang Y, Im J, Lee J, Lee SY, Park J et al (2023) Enhancing dopant diffusion for ultrahigh electrical conductivity and efficient thermoelectric conversion in conjugated polymers. Joule 7:2291-2317. https://doi.org/10.1016/j.joule.2023.09.002 [17] Yamashita Y, Tsurumi J, Ohno M, Fujimoto R, Kumagai S, Kurosawa T et al (2019) Efficient molecular doping of polymeric semiconductors driven by anion exchange. Nature 572:634-638. https://doi.org/10.1038/s41586-019-1504-9 [18] Zuo G, Liu X, Fahlman M, Kemerink M (2018) Morphology determines conductivity and Seebeck coefficient in conjugated polymer blends. ACS Appl Mater Interfaces 10:9638-9644. https://doi.org/10.1021/acsami.8b00122 [19] Durand P, Zeng H, Biskup T, Vijayakumar V, Untilova V, Kiefer C et al (2022) Single ether-based side chains in conjugated polymers: Toward power factors of 2.9 mW m-1 K-2. Adv. Energy Mater 12:2103049. https://doi.org/10.1002/aenm.202103049 [20] Kumari N, Pandey M, Nagamatsu S, Nakamura M, Pandey SS (2020) Investigation and control of charge transport anisotropy in highly oriented friction-transferred polythiophene thin films. ACS Appl Mater Interfaces 12:11876-11883. https://doi.org/10.1021/acsami.9b23345 [21] Goel M, Thelakkat M (2020) Polymer thermoelectrics: Opportunities and challenges. Macromolecules 53:3632-3642. https://doi.org/10.1021/acs.macromol.9b02453 [22] Zhao W, Ding J, Zou Y, Di C-a, Zhu D (2020) Chemical doping of organic semiconductors for thermoelectric applications. Chem Soc Rev 49:7210-7228. https://doi.org/10.1039/D0CS00204F [23] Wang S, Zuo G, Kim J, Sirringhaus H (2022) Progress of conjugated polymers as emerging thermoelectric materials. Prog Polym Sci 129:101548. https://doi.org/10.1016/j.progpolymsci.2022.101548 [24] Chen Y, Zhao Y, Liang Z (2015) Solution processed organic thermoelectrics: Towards flexible thermoelectric modules. Energy Environ Sci 8:401-422. https://doi.org/10.1039/C4EE03297G [25] Di C-a, Xu W, Zhu D (2016) Organic thermoelectrics for green energy. Natl Sci Rev 3:269-271. https://doi.org/10.1093/nsr/nww040 [26] He X, Hao Y, He M, Qin X, Wang L, Yu J (2021) Stretchable thermoelectric-based self-powered dual-parameter sensors with decoupled temperature and strain sensing. ACS Appl Mater Interfaces 13:60498-60507. https://doi.org/10.1021/acsami.1c20456 [27] Jacobs IE, Moulé AJ (2017) Controlling molecular doping in organic semiconductors. Adv Mater 29:1703063. https://doi.org/10.1002/adma.201703063 [28] Deng L, Liu Y, Zhang Y, Wang S, Gao P (2023) Organic thermoelectric materials: Niche harvester of thermal energy. Adv Funct Mater 33:2210770. https://doi.org/10.1002/adfm.202210770 [29] Ding J, Liu Z, Zhao W, Jin W, Xiang L, Wang Z et al (2019) Selenium-substituted diketopyrrolopyrrole polymer for high-performance p-type organic thermoelectric materials. Angew Chem Int Ed 58:18994-18999. https://doi.org/10.1002/anie.201911058 [30] Liu J, Ye G, Potgieser HGO, Koopmans M, Sami S, Nugraha MI et al (2021) Amphipathic side chain of a conjugated polymer optimizes dopant location toward efficient n-type organic thermoelectrics. Adv Mater 33:2006694. https://doi.org/10.1002/adma.202006694 [31] Ponder JF Jr, Gregory SA, Atassi A, Menon AK, Lang AW, Savagian LR et al (2022) Significant enhancement of the electrical conductivity of conjugated polymers by post-processing side chain removal. J Am Chem Soc 144:1351-1360. https://doi.org/10.1021/jacs.1c11558 [32] Shi K, Zhang F, Di C-A, Yan T-W, Zou Y, Zhou X et al (2015) Toward high performance n-type thermoelectric materials by rational modification of bdppv backbones. J Am Chem Soc 137:6979-6982. https://doi.org/10.1021/jacs.5b00945 [33] Kiefer D, Giovannitti A, Sun H, Biskup T, Hofmann A, Koopmans M et al (2018) Enhanced n-doping efficiency of a naphthalenediimide-based copolymer through polar side chains for organic thermoelectrics. ACS Energy Lett 3:278-285. https://doi.org/10.1021/acsenergylett.7b01146 [34] Un H-I, Gregory SA, Mohapatra SK, Xiong M, Longhi E, Lu Y et al (2019) Understanding the effects of molecular dopant on n-type organic thermoelectric properties. Adv Energy Mater 9:1900817. https://doi.org/10.1002/aenm.201900817 [35] Lu Y, Yu Z-D, Liu Y, Ding Y-F, Yang C-Y, Yao Z-F et al (2020) The critical role of dopant cations in electrical conductivity and thermoelectric performance of n-doped polymers. J Am Chem Soc 142:15340-15348. https://doi.org/10.1021/jacs.0c05699 [36] Li H, Song J, Xiao J, Wu L, Katz HE, Chen L (2020) Synergistically improved molecular doping and carrier mobility by copolymerization of donor-acceptor and donor-donor building blocks for thermoelectric application. Adv Funct Mater 30:2004378. https://doi.org/10.1002/adfm.202004378 [37] Culebras M, Gómez CM, Cantarero A (2014) Enhanced thermoelectric performance of pedot with different counter-ions optimized by chemical reduction. J Mater Chem A 2:10109-10115. https://doi.org/10.1039/C4TA01012D [38] Bubnova O, Khan ZU, Malti A, Braun S, Fahlman M, Berggren M et al (2011) Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). Nat Mater 10:429-433. https://doi.org/10.1038/nmat3012 [39] Kim GH, Shao L, Zhang K, Pipe KP (2013) Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat Mater 12:719-723. https://doi.org/10.1038/nmat3635 [40] Qu S, Yao Q, Wang L, Chen Z, Xu K, Zeng H et al (2016) Highly anisotropic P3HT films with enhanced thermoelectric performance via organic small molecule epitaxy. NPG Asia Mater 8:e292-e292. https://doi.org/10.1038/am.2016.97 [41] Wang D, Ding J, Ma Y, Xu C, Li Z, Zhang X et al (2024) Multi-heterojunctioned plastics with high thermoelectric figure of merit. Nature. https://doi.org/10.1038/s41586-024-07724-2 [42] Lu Y, Yu Z-D, Un H-I, Yao Z-F, You H-Y, Jin W et al (2021) Persistent conjugated backbone and disordered lamellar packing impart polymers with efficient n-doping and high conductivities. Adv Mater 33:2005946. https://doi.org/10.1002/adma.202005946 [43] Sun Y, Qiu L, Tang L, Geng H, Wang H, Zhang F et al (2016) Flexible n-type high-performance thermoelectric thin films of poly(nickel-ethylenetetrathiolate) prepared by an electrochemical method. Adv Mater 28:3351-3358. https://doi.org/10.1002/adma.201505922 [44] Liu J, van der Zee B, Alessandri R, Sami S, Dong J, Nugraha MI et al (2020) N-type organic thermoelectrics: Demonstration of ZT > 0.3. Nat Commun 11:5694. https://doi.org/10.1038/s41467-020-19537-8 [45] Han J, Jiang Y, Tiernan E, Ganley C, Song Y, Lee T et al (2023) Blended conjugated host and unconjugated dopant polymers towards n-type all-polymer conductors and high-ZT thermoelectrics. Angew Chem Int Ed 62:e202219313. https://doi.org/10.1002/anie.202219313 [46] Zhao Y, Li Z, Wang D, Zhang X, Ji Z, Niu L et al (2024) High performance and colorful polymer thermoelectrics with imprinted porous film. Adv Mater n/a:2407692. https://doi.org/10.1002/adma.202407692 [47] Kang K, Watanabe S, Broch K, Sepe A, Brown A, Nasrallah I et al (2016) 2D coherent charge transport in highly ordered conducting polymers doped by solid state diffusion. Nat Mater 15:896-902. https://doi.org/10.1038/nmat4634 [48] Vijayakumar V, Zaborova E, Biniek L, Zeng H, Herrmann L, Carvalho A et al (2019) Effect of alkyl side chain length on doping kinetics, thermopower, and charge transport properties in highly oriented F4TCNQ-doped PBTTT films. ACS Appl Mater Interfaces 11:4942-4953. https://doi.org/10.1021/acsami.8b17594 [49] Kroon R, Mengistie DA, Kiefer D, Hynynen J, Ryan JD, Yu L et al (2016) Thermoelectric plastics: From design to synthesis, processing and structure-property relationships. Chem Soc Rev 45:6147-6164. https://doi.org/10.1039/C6CS00149A [50] Kang SD, Snyder GJ (2017) Charge-transport model for conducting polymers. Nat Mater 16:252-257. https://doi.org/10.1038/nmat4784 [51] Lu Y, Wang J-Y, Pei J (2019) Strategies to enhance the conductivity of n-type polymer thermoelectric materials. Chem Mater 31:6412-6423. https://doi.org/10.1021/acs.chemmater.9b01422 [52] Sun Y, Sheng P, Di C, Jiao F, Xu W, Qiu D et al (2012) Organic thermoelectric materials and devices based on p- and n-type poly(metal 1,1,2,2-ethenetetrathiolate)s. Adv Mater 24:932-937. https://doi.org/10.1002/adma.201104305 [53] Aljaghtham M (2024) A comparative performance analysis of thermoelectric generators with a novel leg geometries. Energy Rep 11:859-876. https://doi.org/10.1016/j.egyr.2023.12.041 [54] Zhang Q, Deng K, Wilkens L, Reith H, Nielsch K (2022) Micro-thermoelectric devices. Nat Electron 5:333-347. https://doi.org/10.1038/s41928-022-00776-0 [55] Wu G, Gao C, Chen G, Wang X, Wang H (2016) High-performance organic thermoelectric modules based on flexible films of a novel n-type single-walled carbon nanotube. J Mater Chem A 4:14187-14193. https://doi.org/10.1039/C6TA05120K [56] Yu Z-D, Lu Y, Wang Z-Y, Un H-I, Zelewski SJ, Cui Y et al (2023) High n-type and p-type conductivities and power factors achieved in a single conjugated polymer. Sci Adv 9:eadf3495. https://doi.org/10.1126/sciadv.adf3495 [57] Kim A, Kumar P, Annamalai PK, Patel R (2022) Recent advances in the nanomaterials, design, fabrication approaches of thermoelectric nanogenerators for various applications. Adv Mater Interfaces 9:2201659. https://doi.org/10.1002/admi.202201659 [58] Zheng D, Zhang J, Sun S, Liang J, Li Y, Luo J et al (2024) Flexible organic thermoelectric composites and devices with enhanced performances through fine-tuning of molecular energy levels. ACS Appl Electron Mater 6:4754-4763. https://doi.org/10.1021/acsaelm.4c00796 [59] Kim D, Ju D, Cho K (2018) Heat-sink-free flexible organic thermoelectric generator vertically operating with chevron structure. Adv Mater Technol 3:1700335. https://doi.org/10.1002/admt.201700335 [60] Rösch AG, Gall A, Aslan S, Hecht M, Franke L, Mallick MM et al (2021) Fully printed origami thermoelectric generators for energy-harvesting. npj Flexible Electronics 5:1. https://doi.org/10.1038/s41528-020-00098-1 [61] Menon AK, Meek O, Eng AJ, Yee SK (2017) Radial thermoelectric generator fabricated from n- and p-type conducting polymers. J Appl Polym Sci 134. https://doi.org/10.1002/app.44060 [62] Champier D (2017) Thermoelectric generators: A review of applications. Energy Convers Manage 140:167-181. https://doi.org/10.1016/j.enconman.2017.02.070 [63] Starner T (1996) Human-powered wearable computing. IBM Syst J 35:618-629. https://doi.org/10.1147/sj.353.0618 [64] Huang L, Lin S, Xu Z, Zhou H, Duan J, Hu B et al (2020) Fiber-based energy conversion devices for human-body energy harvesting. Adv Mater 32:1902034. https://doi.org/10.1002/adma.201902034 [65] Jia Y, Jiang Q, Sun H, Liu P, Hu D, Pei Y et al (2021) Wearable thermoelectric materials and devices for self-powered electronic systems. Adv Mater 33:2102990. https://doi.org/10.1002/adma.202102990 [66] Song H, Cai K (2017) Preparation and properties of PEDOT:PSS/Te nanorod composite films for flexible thermoelectric power generator. Energy 125:519-525. https://doi.org/10.1016/j.energy.2017.01.037 [67] Du Y, Cai K, Chen S, Wang H, Shen SZ, Donelson R et al (2015) Thermoelectric fabrics: Toward power generating clothing. Sci Rep 5:6411. https://doi.org/10.1038/srep06411 [68] Sun T, Zhou B, Zheng Q, Wang L, Jiang W, Snyder GJ (2020) Stretchable fabric generates electric power from woven thermoelectric fibers. Nat Commun 11:572. https://doi.org/10.1038/s41467-020-14399-6 [69] Darabi S, Yang C-Y, Li Z, Huang J-D, Hummel M, Sixta H et al (2023) Polymer-based n-type yarn for organic thermoelectric textiles. Adv Electron Mater 9:2201235. https://doi.org/10.1002/aelm.202201235 [70] Wu Q, Hu J (2017) A novel design for a wearable thermoelectric generator based on 3D fabric structure. Smart Mater Struct 26:045037. https://doi.org/10.1088/1361-665X/aa5694 [71] Lu X, Sun L, Jiang P, Bao X (2019) Progress of photodetectors based on the photothermoelectric effect. Adv Mater 31:1902044. https://doi.org/10.1002/adma.201902044 [72] Xu B, An Y, Zhu J, He Y (2024) Flexible photosensors based on photothermal conversion. Green Chem Eng. https://doi.org/10.1016/j.gce.2024.03.001 [73] Jin X-z, Li H, Wang Y, Yang Z-y, Qi X-d, Yang J-h et al (2022) Ultraflexible PEDOT:PSS/Helical carbon nanotubes film for all-in-one photothermoelectric conversion. ACS Appl Mater Interfaces 14:27083-27095. https://doi.org/10.1021/acsami.2c05875 [74] Kim B, Shin H, Park T, Lim H, Kim E (2013) Nir-sensitive poly(3,4-ethylenedioxyselenophene) derivatives for transparent photo-thermo-electric converters. Adv Mater 25:5483-5489. https://doi.org/10.1002/adma.201301834 [75] Jurado JP, Dörling B, Zapata-Arteaga O, Roig A, Mihi A, Campoy-Quiles M (2019) Solar harvesting: A unique opportunity for organic thermoelectrics? Adv Energy Mater 9:1902385. https://doi.org/10.1002/aenm.201902385 [76] Tang X-H, Jin X-Z, Zhang Q, Zhao Q, Yang Z-Y, Fu Q (2023) Achieving free-standing PEDOT:PSS solar generators with efficient all-in-one photothermoelectric conversion. ACS Appl Mater Interfaces 15:23286-23298. https://doi.org/10.1021/acsami.3c02852 [77] Lee JJ, Yoo D, Park C, Choi HH, Kim JH (2016) All organic-based solar cell and thermoelectric generator hybrid device system using highly conductive PEDOT:PSS film as organic thermoelectric generator. Sol Energy 134:479-483. https://doi.org/10.1016/j.solener.2016.05.006 [78] Zhang X, Li T-T, Ren H-T, Peng H-K, Shiu B-C, Wang Y et al (2020) Dual-shell photothermoelectric textile based on a ppy photothermal layer for solar thermal energy harvesting. ACS Appl Mater Interfaces 12:55072-55082. https://doi.org/10.1021/acsami.0c16401 [79] Yang Y, Lin Z-H, Hou T, Zhang F, Wang ZL (2012) Nanowire-composite based flexible thermoelectric nanogenerators and self-powered temperature sensors. Nano Res 5:888-895. https://doi.org/10.1007/s12274-012-0272-8 [80] Wang Y-F, Sekine T, Takeda Y, Yokosawa K, Matsui H, Kumaki D et al (2020) Fully printed PEDOT:PSS-based temperature sensor with high humidity stability for wireless healthcare monitoring. Sci Rep 10:2467. https://doi.org/10.1038/s41598-020-59432-2 [81] Zhang F, Zang Y, Huang D, Di C-a, Zhu D (2015) Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials. Nat Commun 6:8356. https://doi.org/10.1038/ncomms9356 [82] Wen N, Fan Z, Yang S, Guo Y, Zhang J, Lei B et al (2022) Highly stretchable, breathable, and self-powered strain-temperature dual-functional sensors with laminated structure for health monitoring, hyperthermia, and physiotherapy applications. Adv Electron Mater 8:2200680. https://doi.org/10.1002/aelm.202200680 [83] Tang J, Ni H, Peng R-L, Wang N, Zuo L (2023) A review on energy conversion using hybrid photovoltaic and thermoelectric systems. J Power Sources 562:232785. https://doi.org/10.1016/j.jpowsour.2023.232785 [84] Suzuki T, Yoshikawa K, Momose S (2010) Integration of organic photovoltaic and thermoelectric hybrid module for energy harvesting applications. Int Electr Devices Meeting 31.36.31-31.36.34. https://doi.org/10.1109/IEDM.2010.5703460 [85] Li M, Xiong Y, Wei H, Yao F, Han Y, Du Y et al (2023) Flexible Te/PEDOT:PSS thin films with high thermoelectric power factor and their application as flexible temperature sensors. Nanoscale 15:11237-11246. https://doi.org/10.1039/D3NR01516E [86] Du M, Ouyang J, Zhang K (2023) Flexible Bi2Te3/PEDOT nanowire sandwich-like films towards high-performance wearable cross-plane thermoelectric generator and temperature sensor array. J Mater Chem A 11:16039-16048. https://doi.org/10.1039/D3TA02876C [87] Jung M, Jeon S, Bae J (2018) Scalable and facile synthesis of stretchable thermoelectric fabric for wearable self-powered temperature sensors. RSC Adv 8:39992-39999. https://doi.org/10.1039/C8RA06664G [88] Guo X, Lu X, Jiang P, Bao X (2024) Touchless thermosensation enabled by flexible infrared photothermoelectric detector for temperature prewarning function of electronic skin. Adv Mater 36:2313911. https://doi.org/10.1002/adma.202313911 [89] Xu L, Liu Y, Garrett MP, Chen B, Hu B (2013) Enhancing seebeck effects by using excited states in organic semiconducting polymer MEH-PPV based on multilayer electrode/polymer/electrode thin-film structure. J Phys Chem C 117:10264-10269. https://doi.org/10.1021/jp4000957 [90] Huang D, Zou Y, Jiao F, Zhang F, Zang Y, Di C-a et al (2015) Interface-located photothermoelectric effect of organic thermoelectric materials in enabling nir detection. ACS Appl Mater Interfaces 7:8968-8973. https://doi.org/10.1021/acsami.5b01460 [91] Li Y, Zhang Y, Li T, Tang X, Li M, Chen Z et al (2020) A fast response, self-powered and room temperature near infrared-terahertz photodetector based on a MAPBI3/PEDOT:PSS composite. J Mater Chem C 8:12148-12154. https://doi.org/10.1039/D0TC02399J [92] Jin W, Liu L, Yang T, Shen H, Zhu J, Xu W et al (2018) Exploring peltier effect in organic thermoelectric films. Nat Commun 9:3586. https://doi.org/10.1038/s41467-018-05999-4 [93] Wang S-J, Wohlrab S, Reith H, Berger D, Kleemann H, Nielsch K et al (2022) Doped organic micro-thermoelectric coolers with rapid response time. Adv Electron Mater 8:2200629. https://doi.org/10.1002/aelm.202200629 |
| No related articles found! |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||