[1] Pozidis H, Papandreou N, Stanisavljevic M (2021) Circuit and system-level aspects of phase change memory. IEEE Trans Circuits Syst II 68(3):844-850. https://doi.org/10.1109/TCSII.2021.3049716 [2] S.-H. Lee, Technology scaling challenges and opportunities of memory devices. 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 1.1.1-1.1.8 (2016). https://doi.org/10.1109/IEDM.2016.7838026 [3] Wang Q et al (2021) Phase change random access memory for neuro-inspired computing. Advanced Electronic Materials 7(6):2001241. https://doi.org/10.1002/aelm.202001241 [4] J. Shen et al., Elemental electrical switch enabling phase segregation-free operation. Science. 374(6573), 1390-1394 (2021). https://doi.org/10.1126/science.abi6332 [5] Giusca CE et al (2013) Confined crystals of the smallest phase-change material. Nano Lett 13(9):4020-4027. https://doi.org/10.1021/nl4010354 [6] Haensch W et al (2023) Compute in-memory with non-volatile elements for neural networks: a review from a co-design perspective. Adv Mater 35(37):2204944. https://doi.org/10.1002/adma.202204944 [7] Zhang W, Ma E (2020) Unveiling the structural origin to control resistance drift in phase-change memory materials. Mater Today 41:156-176. https://doi.org/10.1016/j.mattod.2020.07.016 [8] Asir Intisar Khan et al., Ultralow-switching current density multilevel phase-change memory on a flexible substrate. Science. 373(6560), 1243-1247 (2021). https://doi.org/10.1126/science.abj1261 [9] Xu M et al (2020) Recent advances on neuromorphic devices based on chalcogenide phase-change materials. Adv Func Mater 30(50):2003419. https://doi.org/10.1002/adfm.202003419 [10] N. Papandreou et al., Programming algorithms for multilevel phase-change memory. 2011 IEEE International Symposium of Circuits and Systems (ISCAS), Rio de Janeiro, Brazil, 329-332 (2011). https://doi.org/10.1109/ISCAS.2011.5937569 [11] Narayanan P et al (2021) Fully on-chip MAC at 14 nm enabled by accurate row-wise programming of PCM-based weights and parallel vector-transport in duration-format. IEEE Trans Electron Devices 68(12):6629-6636. https://doi.org/10.1109/TED.2021.3115993 [12] M. Pasotti et al., A 32KB 18ns random access time embedded PCM with enhanced program throughput for automotive and smart power applications. ESSCIRC 2017 - 43rd IEEE European Solid State Circuits Conference, Leuven, Belgium, 320-323 (2017). https://doi.org/10.1109/ESSCIRC.2017.8094590 [13] Xie. C et al., Speeding up the write operation for multi-level cell phase change memory with programmable ramp-down current pulses, micromachines. 10, 461 (2019). https://doi.org/10.3390/mi10070461 [14] S. Rashidi, M. Jalili, and H. Sarbazi-Azad, Improving MLC PCM performance through relaxed write and read for intermediate resistance levels. ACM Transactions on Architecture and Code Optimization. 15(1), Article 12 (March 2018). https://doi.org/10.1145/3177965 [15] Kim T, Lee S (2020) Evolution of phase-change memory for the storage-class memory and beyond. IEEE Trans Electron Devices 67(4):1394-1406. https://doi.org/10.1109/TED.2020.2964640 [16] Liu Z-C, Wang L (2020) Applications of phase change materials in electrical regime from conventional storage memory to novel neuromorphic computing. IEEE Access 8:76471-76499. https://doi.org/10.1109/ACCESS.2020.2990536 [17] Chen C et al (2023) Nonideality suppression and 16-state multilevel cell storage optimization in phase change memory with linear-like circuit. IEEE Trans Electron Devices 70(2):493-498. https://doi.org/10.1109/TED.2022.3232080 [18] Burr GW et al (2016) Recent progress in phase-change memory technology. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 6(2):146-162. https://doi.org/10.1109/JETCAS.2016.2547718 [19] C. W. Yeh et al., High endurance self-heating OTS-PCM pillar cell for 3D stackable memory. 2018 IEEE Symposium on VLSI Technology, Honolulu, HI, USA, 205-206 (2018). https://doi.org/10.1109/VLSIT.2018.8510621 [20] Zhao Z et al (2024) Chalcogenide ovonic threshold switching selector. Nano-Micro Lett 16:81. https://doi.org/10.1007/s40820-023-01289-x [21] Kim S et al (2011) One-dimensional thickness scaling study of phase change material (Ge2Sb2Te5) using a pseudo 3-terminal device. IEEE Trans Electron Devices 58(5):1483-1489. https://doi.org/10.1109/TED.2011.2121911 [22] Boniardi M et al (2011) Impact of Ge-Sb-Te compound engineering on the set operation performance in phase-change memories. Solid-State Electron 58(1):11-16. https://doi.org/10.1016/j.sse.2010.11.033 [23] Raoux S, Wełnic W, Ielmini D (2010) Phase change materials and their application to nonvolatile memories. Chem Rev 110(1):240-267. https://doi.org/10.1021/cr900040x [24] Wuttig M, Yamada N (2007) Phase-change materials for rewriteable data storage. Nat Mater 6(11):824-832. https://doi.org/10.1038/nmat2009 [25] Oh, Hyung-Rok, et al. Enhanced write performance of a 64-Mb phase-change random access memory. IEEE Journal of Solid-State Circuits. 41(1), 122-126 (2005). [26] K.-J. Lee et al., A 90 nm 1.8 V 512 Mb diode-switch PRAM with 266 MB/s read throughput. IEEE Journal of Solid-State Circuits. 43(1), 150-162 (January 2008). https://doi.org/10.1109/JSSC.2007.908001 [27] F. Bedeschi et al., Set-sweep programming pulse for phase-change memories. 2006 IEEE International Symposium on Circuits and Systems (ISCAS), 4-pp (May 2006). [28] M. Mohseni and A.H. Novin. A survey on techniques for improving phase change memory (PCM) lifetime. Journal of Systems Architecture. (2023), 103008. https://doi.org/10.1016/j.sysarc.2023.103008 |