| [1] Kong LG, Wu RX, Chen Y, Ying HF, Liu LT, Li WT et al (2023) Wafer-scale and universal van der Waals metal semiconductor contact. Nat Commun 14:1014. https://doi.org/10.1038/s41467-023-36715-6 [2] Xu XT, Wang ZL, Yang ZB (2024) Triboelectric junction: a model for dynamic metal-semiconductor contacts. Energy Environ Sci 17:149-157. https://doi.org/10.1039/d3ee02870d
 [3] Shen PC, Su C, Lin YX, Chou AS, Cheng CC, Park JH et al (2021) Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 593:211-217. https://doi.org/10.1038/s41586-021-03472-9
 [4] Wang Y, Kim JC, Wu RJ, Martinez J, Song XJ, Yang J et al (2019) Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 568:70-74. https://doi.org/10.1038/s41586-019-1052-3
 [5] Tung RT (2014) The physics and chemistry of the Schottky barrier height. Appl Phys Rev 1:011304. https://doi.org/10.1063/1.4858400
 [6] Yang RZ, Xu R, Dou WJ, Benner M, Zhang Q, Liu J (2021) Semiconductor-based dynamic heterojunctions as an emerging strategy for high direct-current mechanical energy harvesting. Nano Energy 83:105849. https://doi.org/10.1016/j.nanoen.2021.105849
 [7] Yang RZ, Benner M, Guo ZP, Zhou C, Liu J (2021) High-performance flexible Schottky DC generator via metal/conducting polymer sliding contacts. Adv Funct Mater 31:2103132. https://doi.org/10.1002/adfm.202103132
 [8] Bestelink E, Teng HJ, Zschieschang U, Klauk H, Sporea RA (2023) Extraordinarily weak temperature dependence of the drain current in small-molecule Schottky-contact-controlled transistors through active-layer and contact interplay. Adv Electron Mater 9:2201163. https://doi.org/10.1002/aelm.202201163
 [9] Sze SM, Coleman DJ Jr, Loya A (1971) Current transport in metal-semiconductor-metal (MSM) structures. Solid State Electron 14:1209-1218. https://doi.org/10.1016/0038-1101(71)90109-2
 [10] Hicks J, Tejeda A, Taleb-Ibrahimi A, Nevius MS, Wang F, Shepperd K et al (2013) A wide-bandgap metal-semiconductor-metal nanostructure made entirely from graphene. Nat Phys 9:49-54. https://doi.org/10.1038/nphys2487
 [11] Averine SV, Chan YC, Lam YL, Burnett D, Kimura S, Singh B (2000) Evaluation of Schottky contact parameters in MSM-photodiode structures. Appl Phys Lett 77:274-276. https://doi.org/10.1063/1.126948
 [12] Chen CH, Chang SJ, Su YK, Chi GC, Chi JY, Chang CA et al (2001) GaN metal-semiconductor-metal ultraviolet photodetectors with transparent indium-tin-oxide Schottky contacts. IEEE Photonics Technol Lett 13:848-850. https://doi.org/10.1109/68.935824
 [13] Walker D, Monroy E, Kung P, Wu J, Hamilton M, Sanchez FJ et al (1999) High-speed, low-noise metal-semiconductor-metal ultraviolet photodetectors based on GaN. Appl Phys Lett 74:762-764. https://doi.org/10.1063/1.123303
 [14] Li YH, Zhang Q, Cao YH, Kang ZP, Ren H, Hu ZY et al (2023) A constant-current generator via water droplets driving Schottky diodes without a rectifying circuit. Energy Environ Sci 16:4620-4629. https://doi.org/10.1039/d3ee02280c
 [15] Liu Y, Guo J, Zhu EB, Liao L, Lee SJ, Ding MN et al (2018) Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature 557:696-700. https://doi.org/10.1038/s41586-018-0129-8
 [16] You J, Shao JJ, He YH, Yun FF, See KW, Wang ZL et al (2021) High-electrification performance and mechanism of a water-solid mode triboelectric nanogenerator. ACS Nano 15:8706-8714. https://pubs.acs.org/doi/10.1021/acsnano.1c00795
 [17] Wu H, Mendel N, van den Ende D, Zhou GF, Mugele F (2020) Energy harvesting from drops impacting onto charged surfaces. Phys Rev Lett 125:078301. https://doi.org/10.1103/PhysRevLett.125.078301
 [18] Xu WH, Zheng HX, Liu Y, Zhou XF, Zhang C, Song YX et al (2020) A droplet-based electricity generator with high instantaneous power density. Nature 578:392-396. https://doi.org/10.1038/s41586-020-1985-6
 [19] Xu XT, Li PY, Ding YT, Xu WH, Liu SY, Zhang ZM et al (2022) Droplet energy harvesting panel. Energy Environ Sci 15:2916-2926. https://doi.org/10.1039/d2ee00357k
 [20] Lin SQ, Chen XY, Wang ZL (2021) Contact electrification at the liquid-solid interface. Chem Rev 122:5209-5232. https://doi.org/10.1021/acs.chemrev.1c00176
 [21] Zhang Q, Li YH, Cai H, Yao MF, Zhang HD, Guo LQ et al (2021) A single-droplet electricity generator achieves an ultrahigh output over 100 V without pre-charging. Adv Mater 33:2105761. https://doi.org/10.1002/adma.202105761
 [22] Zhan F, Wang AC, Xu L, Lin SQ, Shao JJ, Chen XY et al (2020) Electron transfer as a liquid droplet contacting a polymer surface. ACS Nano 14:17565-17573. https://doi.org/10.1021/acsnano.0c08332
 [23] Gebbie MA, Liu BC, Guo WX, Anderson SR, Johnstone SG (2023) Linking electric double layer formation to electrocatalytic activity. ACS Catal 13:16222-16239. https://doi.org/10.1021/acscatal.3c04255
 [24] Lin SQ, Chen XY, Wang ZL (2020) The tribovoltaic effect and electron transfer at a liquid-semiconductor interface. Nano Energy 76:105070. https://doi.org/10.1016/j.nanoen.2020.105070
 [25] Tang Z, Yang D, Guo HY, Lin SQ, Wang ZL (2024) Spontaneous wetting induced by contact-electrification at liquid-solid interface. Adv Mater 36:2400451. https://doi.org/10.1002/adma.202400451
 [26] Zheng ML, Lin SQ, Zhu LP, Tang Z, Wang ZL (2022) Effects of temperature on the tribovoltaic effect at liquid-solid interfaces. Adv Mater Interfaces 9:2101757. https://doi.org/10.1002/admi.202101757
 |