| [1] Oh JY, Rondeau-Gagné S, Chiu YC, Chortos A, Lisse F, Wang GJN, et al. (2016) Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature 539:411-416. https://doi.org/10.1038/nature20102 [2] Ding L, Yu ZD, Wang XY, Yao ZF, Lu Y, Yang CY, et al. (2023) Polymer semiconductors: Synthesis, processing, and applications. Chem Rev 123:7421-7497. https://doi.org/10.1021/acs.chemrev.2c00696
 [3] Lin YL, Wang J, Zhang ZG, Bai H, Li Y, Zhu D, et al. (2015) An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv Mater 27:1170-1174. https://doi.org/10.1002/adma.201404317
 [4] Zhao J, Li Y, Yang G, Jiang K, Lin H, Ade H, et al. Efficient organic solar cells processed from hydrocarbon solvents. Nat. Energy 1:15027. https://doi.org/10.1038/nenergy.2015.27
 [5] Yuan J, Zhang Y, Zhou L, Zhang G, Yip HL, Lau TK, et al. (2019) Joule 3:1140-1151. https://doi.org/10.1016/j.joule.2019.01.004
 [6] Guan S, Li Y, Xu C, Yin N, Xu C, Wang C, et al. (2024) Self-assembled interlayer enables high-performance organic photovoltaics with power conversion efficiency exceeding 20%. Adv Mater. https://doi.org/10.1002/adma.202400342
 [7] Van derZee B, Li Y, Wetzelaer GJAH, Blom PWM (2022) Efficiency of polymer light-emitting diodes: a perspective. Adv Mater 34:2108887. https://doi.org/10.1002/adma.202108887
 [8] Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca, NY
 [9] Jackson NE, Chen LX, Ratner MA (2014) Solubility of nonelectrolytes: A first-principles computational approach. J Phys Chem B 118:5194-5202. https://doi.org/10.1021/jp5024197
 [10] Wang T, Brédas JL (2020) Organic solar cells based on non-fullerene small-molecule acceptors: impact of substituent position. Matter 2:119-135. https://doi.org/10.1016/j.matt.2019.10.025
 [11] Wang T, Brédas JL (2021) Organic photovoltaics: understanding the preaggregation of polymer donors in solution and its morphological impact. J Am Chem Soc 143:1822-1835. https://doi.org/10.1021/jacs.0c09542
 [12] Gadisa A, Oosterbaan WD, Vandewal K, Bolsée JC, Bertho S, D’Haen J, et al. (2009) Effect of alkyl side-chain length on photovoltaic properties of poly(3-alkylthiophene)/PCBM bulk heterojunctions. Adv Funct Mater 19:3300-3306. https://doi.org/10.1002/adfm.200900797
 [13] Szarko JM, Guo J, Liang Y, Lee B, Rolczynski BS, Strzalka J, et al. (2010) When function follows form: Effects of donor copolymer side chains on film morphology and BHJ solar cell performance. Adv Mater 22:5468-5472. https://doi.org/10.1002/adma.201002687
 [14] Yiu AT, Beaujuge PM, Lee OP, Woo CH, Toney MF, Fréchet JMJ (2012) Side-chain tunability of furan-containing low-band-gap polymers provides control of structural order in efficient solar cells. J Am Chem Soc 134:2180-2185. https://doi.org/10.1021/ja2089662
 [15] Cabanetos C, Labban AE, Bartelt JA, Douglas JD, Mateker WR, Fréchet JMJ, et al. (2013) Linear side chains in benzo[1, 2-b:4, 5-b’]dithiophene-thieno[3, 4-c]pyrrole-4, 6-dione polymers direct self-assembly and solar cell performance. J Am Chem Soc 135:4656-4659. https://doi.org/10.1021/ja400365b
 [16] Yang L, Tumbleston JR, Zhou H, Ade H, You W (2013) Disentangling the impact of side chains and fluorine substituents of conjugated donor polymers on the performance of photovoltaic blends. Energy Environ Sci 6:316-326. https://doi.org/10.1039/C2EE23235A
 [17] Lee C, Kang H, Lee W, Kim T, Kim KH, Woo HY, et al. (2015) High-performance all-polymer solar cells via side-chain engineering of the polymer acceptor: The importance of the polymer packing structure and the nanoscale blend morphology. Adv Mater 27:2466-2471. https://doi.org/10.1002/adma.201405226
 [18] Jung JW, Jo JW, Chueh CC, Liu F, Jo WH, Russell TP, et al. (2015) Fluoro-substituted n-type conjugated polymers for additive-free all-polymer bulk heterojunction solar cells with high power conversion efficiency of 6.71%. Adv Mater 27:3310-3317. https://doi.org/10.1002/adma.201501214
 [19] Duan C, Willems REM, van Franeker JJ, Bruijnaers BJ, Wienk MM, Janssen RAJ (2016) Effect of side chain length on the charge transport, morphology, and photovoltaic performance of conjugated polymers in bulk heterojunction solar cells. J Mater Chem A 4:1855-1866. https://doi.org/10.1039/C5TA09483F
 [20] Liu S, Kan Z, Thomas S, Cruciani F, Brédas JL, Beaujuge PM (2016) Thieno[3, 4-c]pyrrole-4, 6-dione-3, 4-difluorothiophene polymer acceptors for efficient all-polymer bulk heterojunction solar cells. Angew Chem Int Ed 55:12996-13000. https://doi.org/10.1002/anie.201604307
 [21] Lee W, Lee C, Yu H, Kim DJ, Wang C, Woo HY, et al. (2016) Side chain optimization of naphthalenediimide-bithiophene-based polymers to enhance the electron mobility and the performance in all-polymer solar cells. Adv Funct Mater 26:1543-1553. https://doi.org/10.1002/adfm.201504191
 [22] Guo Y, Li Y, Awartani O, Han H, Zhang G, Ade H, et al. (2017) Side-chain engineering of perylenediimide-vinylene polymer acceptors for high-performance all-polymer solar cells. Mater Chem Front 1:1362-1368. https://doi.org/10.1039/C6QM00355A
 [23] Cho HH, Kim T, Kim K, Lee C, Kim FS, Kim BJ (2017) Synthesis and side-chain engineering of phenylnaphthalenediimide (PNDI)-based n-type polymers for efficient all-polymer solar cells. J Mater Chem A 5:5449-5459. https://doi.org/10.1002/adfm.202308435
 [24] Zhan P, Zhang W, Jacobs IE, Nisson DM, Xie R, Weissen AR, et al. (2018) Side chain length affects backbone dynamics in poly(3-alkylthiophene)s. J Polym Sci Part B: Polym Phys 56:1193-1202. https://doi.org/10.1002/polb.24637
 [25] Wang T, Coropceanu V, Brédas JL (2019) All-polymer solar cells: Impact of the length of the branched alkyl side chains on the polymer acceptors on the interchain packing and electronic properties in amorphous blends. Chem Mater 31:6239-6248. https://doi.org/10.1021/acs.chemmater.9b02284
 [26] Park JS, Kim GU, Lee S, Lee JW, Li S, Lee JY, et al. (2022) Material design and device fabrication strategies for stretchable organic solar cells. Adv Mater 34:2201623. https://doi.org/10.1002/adma.202201623
 [27] Ding Y, Zhu Y, Wang X, Wang Y, Zhang S, Zhang G, et al. (2022) Side chain engineering: Achieving stretch-induced molecular orientation and enhanced mobility in polymer semiconductors. Chem Mater 34:2696-2707. https://doi.org/10.1021/acs.chemmater.1c04085
 [28] Wang B, Xu T, Zou J, Luan S (2023) Optimization of alkyl side chain length in polyimide for gate dielectrics to achieve high mobility and outstanding operational stability in organic transistors. ACS Appl Mater Interfaces 15:7204-7216. https://doi.org/10.1021/acsami.2c18495
 [29] Do K, Saleem Q, Ravva MK, Cruciani F, Kan Z, Wolf J, et al. (2016) Impact of fluorine substituents on π-conjugated polymer main-chain conformations, packing, and electronic couplings. Adv Mater 28:8197-8205. https://doi.org/10.1002/adma.201601282
 [30] Marcus RA (1993) Electron transfer reactions in chemistry. Theory and experiment. Rev Mod Phys 65:599-610. https://doi.org/10.1103/RevModPhys.65.599
 [31] Chen H, Zhang R, Chen X, Zeng G, Kobera L, Abbrent S, et al. (2021) A guest-assisted molecular-organization approach for >17% efficiency organic solar cells using environmentally friendly solvents. Nat Energy 6:1045-1053. https://doi.org/10.1038/s41560-021-00923-5
 [32] Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1-19. https://doi.org/10.1006/jcph.1995.1039
 [33] Jorgensen WL, Tirado-Rives J (1988) The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J Am Chem Soc 110:1657-1666. https://doi.org/10.1021/ja00214a001
 [34] Dahlgren MK, Schyman P, Tirado-Rives J, Jorgensen WL (2013) Characterization of biaryl torsional energetics and its treatment in OPLS all-atom force fields. J Chem Inf Model 53:1191-1199. https://doi.org/10.1021/ci4001597
 [35] Jackson NE, Kohlstedt KL, Savoie BM, de la Cruz MO, Schatz GC, Chen LX, et al. (2015) Conformational order in aggregates of conjugated polymers. J Am Chem Soc 137:6254-6262. https://doi.org/10.1021/jacs.5b00493
 [36] Boys SF, Bernardi F (2009) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553-566. https://doi.org/10.1080/00268970110088901
 [37] Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al (2013) Gaussian 09, Revision D.01. Gaussian, Inc., Wallingford CT
 |