Moore and More ›› 2025, Vol. 1 ›› Issue (1): 26-39.DOI: 10.1007/s44275-024-00007-y
• ORIGINAL ARTICLES • Previous Articles
Received:2024-04-02
															
							
																	Revised:2024-05-17
															
							
																	Accepted:2024-05-22
															
							
																	Online:2024-07-04
															
							
																	Published:2024-07-04
															
						Contact:
								Xiaojuan Ni,E-mail:xjni@arizona.edu;Jean-Luc Brédas,E-mail:jlbredas@arizona.edu   
													Supported by:通讯作者:
					Xiaojuan Ni,E-mail:xjni@arizona.edu;Jean-Luc Brédas,E-mail:jlbredas@arizona.edu
							作者简介:Xiaojuan Ni Xiaojuan Ni currently is a Post-doctoral Research Associate in Chemistry and Biochemistry at The University of Arizona, working with Professor Jean-Luc Bredas. ′ She graduated with Bachelor’s (2010) and Master’s (2013) degrees in Chemical Engineering and Materials Science from Dalian University of Technology, China. She received her Ph.D. in Materials Science and Engineering from the University of Utah (2020) with the mentorship of Professor Feng Liu. Her research focuses on investigating the geometric, electronic, magnetic, and topological properties of organic frameworks and p-conjugated polymers. Additionally, she explores the ground- and excited-state characteristics of hybrid organic-inorganic perovskites, with a specific emphasis on their potential applications in optoelectronics.基金资助:Xiaojuan Ni, Jean-Luc Brédas. Band engineering in two-dimensional porphyrin- and phthalocyanine-based covalent organic frameworks: insight from molecular design[J]. Moore and More, 2025, 1(1): 26-39.
Xiaojuan Ni, Jean-Luc Brédas. Band engineering in two-dimensional porphyrin- and phthalocyanine-based covalent organic frameworks: insight from molecular design[J]. Moore and More, 2025, 1(1): 26-39.
Add to citation manager EndNote|Ris|BibTeX
| [1] Gouterman M (1959) Study of the effects of substitution on the absorption spectra of porphin. J Chem Phys 30:1139-1161. https://doi.org/10.1063/1.1730148 [2] Gouterman M (1961) Spectra of Porphyrins. J Mol Spectrosc 6:138-163. https://doi.org/10.1016/0022-2852(61)90236-3 [3] Gouterman M, Wagnière GH, Snyder LC (1963) Spectra of porphyrins: part II. Four orbital model. J Mol Spectrosc 11:108-127. https://doi.org/10.1016/0022-2852(63)90011-0 [4] Weiss C, Kobayashi H, Gouterman M (1965) Spectra of porphyrins: part III. Self-consistent molecular orbital calculations of porphyrin and related ring systems. J Mol Spectrosc 16:415-450. https://doi.org/10.1016/0022-2852(65)90132-3 [5] Ortí E, Brédas JL (1988) Electronic structure of metal-free phthalocyanine: a valence effective hamiltonian theoretical study. J Chem Phys 89:1009-1016. https://doi.org/10.1063/1.455251 [6] Thomas AL (1990) Phthalocyanine research and applications. CRC Press, United States [7] McKeown NB (1998) Phthalocyanine materials: synthesis, structure and function. Cambridge University Press, Cambridge [8] Kadish K, Smith KM, Guilard R (2003) The porphyrin Handbook. Elsevier Inc, Amsterdam [9] Darwent JR, Douglas P, Harriman A, Porter G, Richoux M-C (1982) Metal phthalocyanines and porphyrins as photosensitizers for reduction of water to hydrogen. Coord Chem Rev 44:83-126. https://doi.org/10.1016/S0010-8545(00)80518-4 [10] Bonnett R (1995) Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy. Chem Soc Rev 24:19-33. https://doi.org/10.1039/CS9952400019 [11] Gassman PG, Ghosh A, Almlof J (1992) Electronic effects of peripheral substituents in porphyrins: x-ray photoelectron spectroscopy and Ab Initio self-consistent field calculations. J Am Chem Soc 114:9990-10000. https://doi.org/10.1021/ja00051a035 [12] Cho HS, Jeong DH, Cho S, Kim D, Matsuzaki Y, Tanaka K, Tsuda A, Osuka A (2002) Photophysical properties of porphyrin tapes. J Am Chem Soc 124:14642-14654. https://doi.org/10.1021/ja020826w [13] Liao M-S, Scheiner S (2002) Electronic structure and bonding in metal porphyrins, Metal=Fe Co, Ni, Cu, Zn. J Chem Phys 117:205-219. https://doi.org/10.1063/1.1480872 [14] Li J, Zhang S-L (2010) Conductivity exponents in stick percolation. Phys Rev E Stat Nonlin Soft Matter Phys 81(2 Pt 1):021120. https://doi.org/10.1103/PhysRevE.81.021120 [15] Kar P, Sardar S, Alarousu E, Sun J, Seddigi ZS, Ahmed SA, Danish EY, Mohammed OF, Pal SK (2014) Impact of metal ions in porphyrin-based applied materials for visible-light photocatalysis: key information from ultrafast electronic spectroscopy. Chemistry 20:10475-10483. https://doi.org/10.1002/chem.201402632 [16] Yella A, Lee H-W, Tsao HN, Yi C, Chandiran AK, Nazeeruddin MdK, Diau EW-G, Yeh C-Y, Zakeeruddin SM, Grätzel M (1979) Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 2011(334):629-634. https://doi.org/10.1126/science.1209688 [17] Li L-L, Diau EW-G (2013) Porphyrin-sensitized solar cells. Chem Soc Rev 42:291-304. https://doi.org/10.1039/C2CS35257E [18] Sorokin AB (2013) Phthalocyanine metal complexes in catalysis. Chem Rev 113:8152-8191. https://doi.org/10.1021/cr4000072 [19] Grill L, Dyer M, Lafferentz L, Persson M, Peters MV, Hecht S (2007) Nano-architectures by covalent assembly of molecular building blocks. Nat Nanotechnol 2:687-691. https://doi.org/10.1038/nnano.2007.346 [20] Perepichka DF, Rosei F (1979) Extending polymer conjugation into the second dimension. Science 2009(323):216-217. https://doi.org/10.1126/science.1165429 [21] Spitler EL, Dichtel WR (2010) Lewis acid-catalysed formation of two-dimensional phthalocyanine covalent organic frameworks. Nat Chem 2:672-677. https://doi.org/10.1038/nchem.695 [22] Spitler EL, Colson JW, Uribe-Romo FJ, Woll AR, Giovino MR, Saldivar A, Dichtel WR (2012) Lattice expansion of highly oriented 2D phthalocyanine covalent organic framework films. Angew Chem Int Ed 51:2623-2627. https://doi.org/10.1002/anie.201107070 [23] So MC, Jin S, Son H-J, Wiederrecht GP, Farha OK, Hupp JT (2013) Layer-by-layer fabrication of oriented porous thin films based on porphyrin-containing metal-organic frameworks. J Am Chem Soc 135:15698-15701. https://doi.org/10.1021/ja4078705 [24] Chen R, Shi J-L, Ma Y, Lin G, Lang X, Wang C (2019) Designed synthesis of a 2D porphyrin-based Sp2 carbon-conjugated covalent organic framework for heterogeneous photocatalysis. Angew Chem Int Ed 58:6430-6434. https://doi.org/10.1002/anie.201902543 [25] Li B-Q, Zhang S-Y, Wang B, Xia Z-J, Tang C, Zhang Q (2018) A porphyrin covalent organic framework cathode for flexible Zn-air batteries. Energy Environ Sci 11:1723-1729. https://doi.org/10.1039/C8EE00977E [26] Jia H, Yao Y, Zhao J, Gao Y, Luo Z, Du P (2018) A novel two-dimensional nickel phthalocyanine-based metal-organic framework for highly efficient water oxidation catalysis. J Mater Chem A Mater 6:1188-1195. https://doi.org/10.1039/c7ta07978h [27] Zhong H, Ly KH, Wang M, Krupskaya Y, Han X, Zhang J, Zhang J, Kataev V, Büchner B, Weidinger IM, Kaskel S, Liu P, Chen M, Dong R, Feng X (2019) A phthalocyanine-based layered two-dimensional conjugated metal-organic framework as a highly efficient electrocatalyst for the oxygen reduction reaction. Angew Chem Int Ed 58:10677-10682. https://doi.org/10.1002/anie.201907002 [28] Han B, Ding X, Yu B, Wu H, Zhou W, Liu W, Wei C, Chen B, Qi D, Wang H, Wang K, Chen Y, Chen B, Jiang J (2021) Two-dimensional covalent organic frameworks with cobalt(II)-phthalocyanine sites for efficient electrocatalytic carbon dioxide reduction. J Am Chem Soc 143:7104-7113. https://doi.org/10.1021/jacs.1c02145 [29] Ji W, Wang T-X, Ding X, Lei S, Han B-H (2021) Porphyrin- and phthalocyanine-based porous organic polymers: from synthesis to application. Coord Chem Rev 439:213875. https://doi.org/10.1016/j.ccr.2021.213875 [30] Huang S, Chen K, Li T-T (2022) Porphyrin and phthalocyanine based covalent organic frameworks for electrocatalysis. Coord Chem Rev 464:214563. https://doi.org/10.1016/j.ccr.2022.214563 [31] Liang B, Zhao J, Wang J, Li Y, Han B, Li J, Ding X, Xie Z, Wang H, Zhou S (2023) Nonlinear optical properties of porphyrin-based covalent organic frameworks determined by steric-orientation of conjugation. J Mater Chem C 11:3354-3359. https://doi.org/10.1039/D2TC05258J [32] Dong X-Y, Yan F-Q, Wang Q-Y, Feng P-F, Zou R-Y, Wang S, Zang S-Q (2023) A benzimidazole-linked bimetallic phthalocyanine-porphyrin covalent organic framework synergistically promotes CO2 electroreduction. J Mater Chem A 11:15732-15738. https://doi.org/10.1039/D3TA03023G [33] Li M, Han B, Li S, Zhang Q, Zhang E, Gong L, Qi D, Wang K, Jiang J. Constructing 2D phthalocyanine covalent organic framework with enhanced stability and conductivity via interlayer hydrogen bonding as electrocatalyst for CO2 reduction. Small. 2024:2310147. https://doi.org/10.1002/smll.202310147 [34] Hu H, Miao R, Yang F, Duan F, Zhu H, Hu Y, Du M, Lu S (2024) Intrinsic activity of metalized porphyrin-based covalent organic frameworks for electrocatalytic nitrate reduction. Adv Energy Mater 14:2302608. https://doi.org/10.1002/aenm.202302608 [35] Jin E, Asada M, Xu Q, Dalapati S, Addicoat MA, Brady MA, Xu H, Nakamura T, Heine T, Chen Q, Jiang D (1979) Two-dimensional Sp2 carbon-conjugated covalent organic frameworks. Science 2017(357):673-676. https://doi.org/10.1126/science.aan0202 [36] Joshi T, Chen C, Li H, Diercks CS, Wang G, Waller PJ, Li H, Bredas J-L, Yaghi OM, Crommie MF (2019) Local electronic structure of molecular heterojunctions in a single-layer 2D covalent organic framework. Adv Mater 31:1805941. https://doi.org/10.1002/adma.201805941 [37] Thomas S, Li H, Zhong C, Matsumoto M, Dichtel WR, Bredas JL (2019) Electronic structure of two-dimensional π-conjugated covalent organic frameworks. Chem Mater 31:3051-3065. https://doi.org/10.1021/acs.chemmater.8b04986 [38] Thomas S, Li H, Dasari RR, Evans AM, Castano I, Allen TG, Reid OG, Rumbles G, Dichtel WR, Gianneschi NC, Marder SR, Coropceanu V, Brédas J-L (2019) Design and synthesis of two-dimensional covalent organic frameworks with four-arm cores: prediction of remarkable ambipolar charge-transport properties. Mater Horiz 6:1868-1876. https://doi.org/10.1039/C9MH00035F [39] Jiang W, Zhang S, Wang Z, Liu F, Low T (2020) Topological band engineering of lieb lattice in phthalocyanine-based metal-organic frameworks. Nano Lett 20:1959-1966. https://doi.org/10.1021/acs.nanolett.9b05242 [40] Pham HQ, Pham-Tran N-N (2021) Topological insulating phase in single-layer pentagonal covalent organic frameworks: a reticular design using metal phthalocyanine. Chem Mater 33:4488-4499. https://doi.org/10.1021/acs.chemmater.1c00671 [41] Ni X, Huang H, Brédas J-L (2022) Emergence of a two-dimensional topological dirac semimetal phase in a phthalocyanine-based covalent organic framework. Chem Mater 34:3178-3184. https://doi.org/10.1021/acs.chemmater.1c04317 [42] Ni X, Brédas J-L (2022) Electronic structure of zinc-5, 10, 15, 20-tetraethynylporphyrin: evolution from the molecule to a one-dimensional chain, a two-dimensional covalent organic framework, and a nanotube. Chem Mater 34:1334-1341. https://doi.org/10.1021/acs.chemmater.1c04013 [43] Lieb EH (1989) Two theorems on the hubbard model. Phys Rev Lett 62:1201-1204. https://doi.org/10.1103/PhysRevLett.62.1201 [44] Slot MR, Gardenier TS, Jacobse PH, van Miert GCP, Kempkes SN, Zevenhuizen SJM, Smith CM, Vanmaekelbergh D, Swart I (2017) Experimental realization and characterization of an electronic lieb lattice. Nat Phys 13:672-676. https://doi.org/10.1038/nphys4105 [45] Jiang W, Ni X, Liu F (2021) Exotic topological bands and quantum states in metal-organic and covalent-organic frameworks. Acc Chem Res 54:416-426. https://doi.org/10.1021/acs.accounts.0c00652 [46] Cui B, Zheng X, Wang J, Liu D, Xie S, Huang B (2020) Realization of lieb lattice in covalent-organic frameworks with tunable topology and magnetism. Nat Commun 11:66. https://doi.org/10.1038/s41467-019-13794-y [47] Jiang W, Huang H, Liu F (2019) A lieb-like lattice in a covalent-organic framework and its stoner ferromagnetism. Nat Commun 10:2207. https://doi.org/10.1038/s41467-019-10094-3 [48] Zhang Y, Zhao S, Polozij M, Heine T (2024) Electronic lieb lattice signatures embedded in two-dimensional polymers with square lattice. Chem Sci. https://doi.org/10.1039/D3SC06367D [49] Kollár AJ, Fitzpatrick M, Sarnak P, Houck AA (2020) Line-graph lattices: euclidean and non-euclidean flat bands, and implementations in circuit quantum electrodynamics. Commun Math Phys 376:1909-1956. https://doi.org/10.1007/s00220-019-03645-8 [50] Canals B (2002) From the square lattice to the checkerboard lattice: spin-wave and large-n limit analysis. Phys Rev B 65:184408. https://doi.org/10.1103/PhysRevB.65.184408 [51] Iskin M (2019) Origin of flat-band superfluidity on the mielke checkerboard lattice. Phys Rev A 99:053608. https://doi.org/10.1103/PhysRevA.99.053608 [52] Hu X, Zhang R-W, Ma D-S, Cai Z, Geng D, Sun Z, Zhao Q, Gao J, Cheng P, Chen L, Wu K, Yao Y, Feng B (2023) Realization of a two-dimensional checkerboard lattice in monolayer Cu2N. Nano Lett 23:5610-5616. https://doi.org/10.1021/acs.nanolett.3c01111 [53] Ni X, Li H, Liu F, Brédas J-L (2022) Engineering of flat bands and dirac bands in two-dimensional Covalent Organic Frameworks (COFs): relationships among molecular orbital symmetry, lattice symmetry, and electronic-structure characteristics. Mater Horiz 9:88-98. https://doi.org/10.1039/D1MH00935D [54] Chai J-D, Head-Gordon M (2008) Systematic optimization of long-range corrected hybrid density functionals. J Chem Phys 128:84106. https://doi.org/10.1063/1.2834918 [55] Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys Chem Chem Phys 10:6615-6620. https://doi.org/10.1039/B810189B [56] Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian16, Revision C.01. Gaussian Inc. Wallingford CT. https://gaussian.com/citation/ [57] Körzdörfer T, Brédas J-L (2014) Organic electronic materials: recent advances in the DFT description of the ground and excited states using tuned range-separated hybrid functionals. Acc Chem Res 47:3284-3291. https://doi.org/10.1021/ar500021t [58] Kresse G, Furthmüller J (1996) Efficiency of Ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15-50. https://doi.org/10.1016/0927-0256(96)00008-0 [59] Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865. https://doi.org/10.1103/PhysRevLett.77.3865 [60] Perdew JP, Burke K, Ernzerhof M (1997) Generalized gradient approximation made simple. Phys Rev Lett 78:1396. https://doi.org/10.1103/PhysRevLett.78.1396 [61] Wang V, Xu N, Liu J-C, Tang G, Geng W-T (2021) VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using vasp code. Comput Phys Commun 267:108033. https://doi.org/10.1016/j.cpc.2021.108033 [62] Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44:1272-1276. https://doi.org/10.1107/S0021889811038970 [63] Ni X, Huang H, Brédas J-L (2022) Organic higher-order topological insulators: heterotriangulene-based covalent organic frameworks. J Am Chem Soc 144:22778-22786. https://doi.org/10.1021/jacs.2c11229 [64] Ni X, Li H, Brédas J-L (2024) Half-metallic ferromagnetism in radical-bridged metal-organic frameworks. Chem Mater 36:2380-2389. https://doi.org/10.1021/acs.chemmater.3c03039 [65] Liu C-H, Wei A, Cheung MF, Perepichka DF (2022) Vanishing electronic band gap in two-dimensional hydrogen-bonded organic frameworks. Chem Mater 34:3461-3467. https://doi.org/10.1021/acs.chemmater.2c00294 [66] Ni X, Yan J, Liu F (2020) Electronic structures of a diagonally striped lattice: multiple (N-1)-fold degenerate flat bands. Phys Rev B 102:235117. https://doi.org/10.1103/PhysRevB.102.235117 [67] Wang ZF, Jin K-H, Liu F (2016) Quantum spin hall phase in 2D trigonal lattice. Nat Commun 7:12746. https://doi.org/10.1038/ncomms12746 [68] Kane CL, Mele EJ (2005) Quantum spin hall effect in graphene. Phys Rev Lett 95:226801. https://doi.org/10.1103/PhysRevLett.95.226801 [69] Kane CL, Mele EJ (2005) Z2 Topological order and the quantum spin hall effect. Phys Rev Lett 95:146802. https://doi.org/10.1103/PhysRevLett.95.146802 [70] Fu L, Kane CL (2007) Topological insulators with inversion symmetry. Phys Rev B Condens Matter Mater Phys 76:045302. https://doi.org/10.1103/PhysRevB.76.045302 [71] Thouless DJ, Kohmoto M, Nightingale MP, den Nijs M (1982) Quantized hall conductance in a two-dimensional periodic potential. Phys Rev Lett 49:405-408. https://doi.org/10.1103/PhysRevLett.49.405 [72] Zhang S, Zhou J, Wang Q, Chen X, Kawazoe Y, Jena P (2015) Penta-graphene: a new carbon allotrope. Proc Natl Acad Sci 112:2372-2377. https://doi.org/10.1073/pnas.1416591112 [73] Li F, Tu K, Zhang H, Chen Z (2015) Flexible structural and electronic properties of a pentagonal B2C monolayer via external strain: a computational investigation. Phys Chem Chem Phys 17(37):24151-24156. https://doi.org/10.1039/C5CP03885E [74] Zheng Y, Chen D, Liu L, Liu Y, Chen M, Zhuang H, Jiao Y (2021) Topological transformations in hyperuniform pentagonal two-dimensional materials induced by stone-wales defects. Phys Rev B 103:245413. https://doi.org/10.1103/PhysRevB.103.245413 [75] Bravo S, Pacheco M, Nuñez V, Correa JD, Chico L (2021) Two-dimensional weyl points and nodal lines in pentagonal materials and their optical response. Nanoscale 13:6117-6128. https://doi.org/10.1039/D1NR00064K [76] Bravo S, Pacheco M, Correa JD, Chico L (2022) Topological bands in the PdSe2 pentagonal monolayer. Phys Chem Chem Phys 24:15749-15755. https://doi.org/10.1039/D2CP01822E [77] Guo Y, Zhou J, Xie H, Chen Y, Wang Q (2022) Screening transition metal-based polar pentagonal monolayers with large piezoelectricity and shift current. NPJ Comput Mater 8:40. https://doi.org/10.1038/s41524-022-00728-4 [78] Shen Y, Wang Q (2022) Pentagon-based 2D materials: classification, Properties and Applications. Phys Rep 964:1-42. https://doi.org/10.1016/j.physrep.2022.03.003 [79] Wang M, Ballabio M, Wang M, Lin HH, Biswal BP, Han X, Paasch S, Brunner E, Liu P, Chen M, Bonn M, Heine T, Zhou S, Cánovas E, Dong R, Feng X (2019) Unveiling electronic properties in metal-phthalocyanine-based pyrazine-linked conjugated two-dimensional covalent organic frameworks. J Am Chem Soc 141:16810-16816. https://doi.org/10.1021/jacs.9b07644 [80] Zhou J, Wang Q, Sun Q, Kawazoe Y, Jena P (2012) Strain-induced spin crossover in phthalocyanine-based. J Phys Chem Lett 3:3109-3114. https://doi.org/10.1021/jz301303t [81] Li J, Gu L, Wu R (2020) Transition-metal phthalocyanine monolayers as new chern insulators. Nanoscale 12:3888-3893. https://doi.org/10.1039/C9NR09817H [82] Hu T, Zhang T, Mu H, Wang Z (2022) Intrinsic second-order topological insulator in two-dimensional covalent organic frameworks. J Phys Chem Lett 13:10905-10911. https://doi.org/10.1021/acs.jpclett.2c02683 | 
| No related articles found! | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||