Moore and More ›› 2025, Vol. 1 ›› Issue (2): 171-194.DOI: 10.1007/s44275-024-00013-0
• REVIEWS • Previous Articles
Nadia Anwar1, Guangya Jiang2, Yi Wen1, Muqarrab Ahmed3, Haodong Zhong1, Shen Ao1, Zehui Li4, Yunhan Ling1, Grégory F. Schneider2, Wangyang Fu1, Zhengjun Zhang1
Received:2024-05-26
															
							
																	Revised:2024-09-19
															
							
																	Accepted:2024-09-24
															
							
																	Online:2024-11-25
															
							
																	Published:2024-11-25
															
						Contact:
								Wangyang Fu,E-mail:fwy2018@mail.tsinghua.edu.cn;Zhengjun Zhang,E-mail:zjzhang@tsinghua.edu.cn   
													Supported by:Nadia Anwar1, Guangya Jiang2, Yi Wen1, Muqarrab Ahmed3, Haodong Zhong1, Shen Ao1, Zehui Li4, Yunhan Ling1, Grégory F. Schneider2, Wangyang Fu1, Zhengjun Zhang1
通讯作者:
					Wangyang Fu,E-mail:fwy2018@mail.tsinghua.edu.cn;Zhengjun Zhang,E-mail:zjzhang@tsinghua.edu.cn
							作者简介:Nadia Anwar is a doctoral researcher at the School of Materials Science and Engineering, Tsinghua University, Beijing, China. She is working on evaluating the optical and electrochemical properties of nanostructured materials for electrochromic devices under the supervision of Assoc. Prof. Wangyang Fu and Prof. Zhengjun Zhang.基金资助:Nadia Anwar, Guangya Jiang, Yi Wen, Muqarrab Ahmed, Haodong Zhong, Shen Ao, Zehui Li, Yunhan Ling, Grégory F. Schneider, Wangyang Fu, Zhengjun Zhang. Evaluating the potential of two-dimensional materials for innovations in multifunctional electrochromic biochemical sensors: a review[J]. Moore and More, 2025, 1(2): 171-194.
Nadia Anwar, Guangya Jiang, Yi Wen, Muqarrab Ahmed, Haodong Zhong, Shen Ao, Zehui Li, Yunhan Ling, Grégory F. Schneider, Wangyang Fu, Zhengjun Zhang. Evaluating the potential of two-dimensional materials for innovations in multifunctional electrochromic biochemical sensors: a review[J]. Moore and More, 2025, 1(2): 171-194.
Add to citation manager EndNote|Ris|BibTeX
| [1] Cai Y, Yang B, Ji J, Sun F, Zhao Y, Yu L et al (2022) A universal tandem device of DC-driven electrochromism and AC-driven electroluminescence for multi-functional smart windows. Adv Mater Technol 8:2201682. https://doi.org/10.1002/admt.202201682 [2] Granqvist CG (2014) Electrochromics for smart windows: Oxide-based thin films and devices. Thin Solid Films 564:1-38. https://doi.org/10.1016/j.tsf.2014.02.002 [3] Balendhran S, Walia S, Nili H, Ou JZ, Zhuiykov S, Kaner RB et al (2013) Two‐dimensional molybdenum trioxide and dichalcogenides. Adv Func Mater 23:3952-3970. https://doi.org/10.1002/adfm.201300125 [4] Sharma R, Sharma M, Goswamy J (2022) Synthesis and characterization of MoS2/WO3 nanocomposite for electrochromic device application. Int J Energy Res 46:22176-22187. https://doi.org/10.1002/er.8726 [5] Chen X, Zhang H, Li W, Xiao Y, Ge Z, Li Y et al (2022) Electro-optical performance of all solid state electrochromic devices with NaF electrolytes. Mater Lett 324:132692. https://doi.org/10.1016/j.matlet.2022.132692 [6] Zohrevand N, Madrakian T, Ghoorchian A, Afkhami A (2022) Simple electrochromic sensor for the determination of amines based on the proton sensitivity of polyaniline film. Electrochim Acta 427:140856. https://doi.org/10.1016/j.electacta.2022.140856 [7] Bi S, Jin W, Han X, Cao X, He Z, Asare-Yeboah K et al (2022) Ultra-fast-responsivity with sharp contrast integrated flexible piezo electrochromic based tactile sensing display. Nano Energy 102:107629. https://doi.org/10.1016/j.nanoen.2022.107629 [8] Xiao M, Wei S, Chen J, Tian J, Brooks III CL, Marsh ENG et al (2019) Molecular mechanisms of interactions between monolayered transition metal dichalcogenides and biological molecules. J Am Chem Soc 141:9980-9988. https://doi.org/10.1021/jacs.9b03641 [9] Rao C, Gopalakrishnan K, Maitra U (2015) Comparative study of potential applications of graphene, MoS2, and other two-dimensional materials in energy devices, sensors, and related areas. ACS Appl Mater Interfaces 7:7809-7832. https://doi.org/10.1021/am509096x [10] Li Y, Yang B, Xu S, Huang B, Duan W (2022) Emergent phenomena in magnetic two-dimensional materials and van der Waals heterostructures. ACS Appl Electron Mater 4: 3278-3302. https://doi.org/10.1021/acsaelm.2c00419 [11] Mphuthi N, Sikhwivhilu L, Ray SS (2022) Functionalization of 2D MoS2 nanosheets with various metal and metal oxide nanostructures: their properties and application in electrochemical sensors. Biosensors 12:386. https://doi.org/10.3390/bios12060386 [12] Li T, Shang D, Gao S, Wang B, Kong H, Yang G et al (2022) Two-dimensional material-based electrochemical sensors/biosensors for food safety and biomolecular detection. Biosensors 12:314. https://doi.org/10.3390/bios12050314 [13] Kalia S, Rana DS, Thakur N, Singh D, Kumar R, Singh RK et al. (2022) Two-dimensional layered molybdenum disulfide (MoS2)-reduced graphene oxide (rGO) heterostructures modified with Fe3O4 for electrochemical sensing of epinephrine. Mater Chem Phys 287: 126274. https://doi.org/10.1016/j.matchemphys.2022.126274 [14] Jiao L, Xu W, Wu Y, Yan H, Gu W, Du D et al (2021) Single-atom catalysts boost signal amplification for biosensing. Chem Soc Rev 50:750-765. https://doi.org/10.1039/D0CS00367K [15] Zribi R, Foti A, Donato MG, Gucciardi PG, Neri G (2022) Electrochemical and sensing properties of 2D-MoS2 nanosheets produced via liquid cascade centrifugation. Electrochim Acta 436:141433. https://doi.org/10.1016/j.electacta.2022.141433 [16] Tsuboi A, Nakamura K, Kobayashi N (2014) Multicolor electrochromism showing three primary color states (cyan-magenta-yellow) based on size-and shape-controlled silver nanoparticles. Chem Mater 26:6477-6485. https://doi.org/10.1021/cm5039039 [17] Barile CJ, Slotcavage DJ, Hou J, Strand MT, Hernandez TS, McGehee MD (2017) Dynamic windows with neutral color, high contrast, and excellent durability using reversible metal electrodeposition. Joule 1:133-145. https://doi.org/10.1016/j.joule.2017.06.001 [18] Eren E, Karaca GY, Koc U, Oksuz L, Oksuz AU (2017) Electrochromic characteristics of radio frequency plasma sputtered WO3 thin films onto flexible polyethylene terephthalate substrates. Thin Solid Films 634:40-50. https://doi.org/10.1016/j.tsf.2017.05.009 [19] Akkurt N, Pat S, Mohammadigharehbagh R, Olkun A, Korkmaz Ş (2020) Electrochromic properties of graphene doped Nb2O5 thin film. ECS J Solid State Sci Technol 9:125004. https://doi.org/10.1149/2162-8777/abd079 [20] Xiong S, Li Z, Gong M, Wang X, Fu J, Shi Y et al (2014) Covalently bonded polyaniline and para-phenylenediamine functionalized graphene oxide: How the conductive two-dimensional nanostructure influences the electrochromic behaviors of polyaniline. Electrochim Acta 138:101-108. https://doi.org/10.1016/j.electacta.2014.06.108 [21] Friend RH, Yoffe AD (1987) Electronic properties of intercalation complexes of the transition metal dichalcogenides. Adv Phys 36:1-94. https://doi.org/10.1080/00018738700101951 [22] Iqbal MA, Malik M, Shahid W, Ahmad W, Min-Dianey KA, Pham PV et al (2022) Plasmonic 2D materials: Overview, advancements, future prospects and functional applications. In: Pham PV (ed) 21st Century Nanostructured Materials - Physics, Chemistry, Classification, and Emerging Applications in Industry, Biomedicine, and Agriculture. IntechOpen, London. https://doi.org/10.5772/intechopen.101580 [23] Choi W, Choudhary N, Han GH, Park J, Akinwande D, Lee YH (2017) Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater Today 20:116-130. https://doi.org/10.1016/j.mattod.2016.10.002 [24] Wang Z, Zhu W, Qiu Y, Yi X, von dem Bussche A, Kane A et al (2016) Biological and environmental interactions of emerging two-dimensional nanomaterials. Chem Soc Rev 45:1750-1780. https://doi.org/10.1039/c5cs00914f [25] Singh NB, Hua SuC, Arnold B, Choa F-S, Sova S, Cooper C (2017) Multifunctional 2D-materials: gallium selenide. Mater Today Proc 4:5471-5477. https://doi.org/10.1016/j.matpr.2017.06.002 [26] Zhou J, Shen L, Costa MD, Persson KA, Ong SP, Huck P et al (2019) 2DMatPedia, an open computational database of two-dimensional materials from top-down and bottom-up approaches. Sci Data 6:86. https://doi.org/10.1038/s41597-019-0097-3 [27] Li M, Wu Z, Tian Y, Pan F, Gould T, Zhang S (2022) Nanoarchitectonics of two‐dimensional electrochromic materials: achievements and future challenges. Adv Mater Technol 4:2200917. https://doi.org/10.1002/admt.202200917 [28] Gu C, Jia A-B, Zhang Y-M, Zhang SX-A (2022) Emerging electrochromic materials and devices for future displays. Chem Rev 122: 14679-14721. https://doi.org/10.1021/acs.chemrev.1c01055 [29] Tang X, Chen G, Li Z, Li H, Zhang Z, Zhang Q et al (2020) Structure evolution of electrochromic devices from 'face-to-face' to 'shoulder-by-shoulder'. J Mater Chem C 8:11042-11051. https://doi.org/10.1039/d0tc01132k [30] Parvez K, Yang S, Feng X, Müllen K (2015) Exfoliation of graphene via wet chemical routes. Synth Met 210:123-132. https://doi.org/10.1016/j.synthmet.2015.07.014 [31] Xu X, Zhang Z, Qiu L, Zhuang J, Zhang L, Wang H et al (2016) Ultrafast growth of single-crystal graphene assisted by a continuous oxygen supply. Nat Nanotechnol 11:930-935. https://doi.org/10.1038/nnano.2016.132 [32] Niu L, Coleman JN, Zhang H, Shin H, Chhowalla M, Zheng Z (2016) Production of two‐dimensional nanomaterials via liquid‐based direct exfoliation. Small 12:272-293. https://doi.org/10.1002/smll.201502207 [33] Yi M, Shen Z (2015) A review on mechanical exfoliation for the scalable production of graphene. J Mater Chem A 3:11700-11715. https://doi.org/10.1039/C5TA00252D [34] Pellitero MA, del Campo FJ (2019) Electrochromic sensors: Innovative devices enabled by spectroelectrochemical methods. Curr Opin Electrochem 15:66-72. https://doi.org/10.1016/j.coelec.2019.03.004 [35] Xiong J, Cui P, Chen X, Wang J, Parida K, Lin M-F et al (2018) Skin-touch-actuated textile-based triboelectric nanogenerator with black phosphorus for durable biomechanical energy harvesting. Nat Commun 9:4280. https://doi.org/10.1038/s41467-018-06759-0 [36] Gao J, Li B, Tan J, Chow P, Lu T-M, Koratkar N (2016) Aging of transition metal dichalcogenide monolayers. ACS Nano 10:2628-2635. https://doi.org/10.1021/acsnano.5b07677 [37] Huang W, Zhang Y, Song M, Wang B, Hou H, Hu X et al (2022) Encapsulation strategies on 2D materials for field effect transistors and photodetectors. Chin Chem Lett 33:2281-2290. https://doi.org/10.1016/j.cclet.2021.08.086 [38] Kandpal S, Ghosh T, Rani C, Rani S, Pathak DK, Tanwar M et al (2022) MoS2 nano-flower incorporation for improving organic-organic solid state electrochromic device performance. Sol Energy Mater Sol Cells 236:111502. https://doi.org/10.1016/j.solmat.2021.111502 [39] Chen WH, Li FW, Liou GS (2019) Novel stretchable ambipolar electrochromic devices based on highly transparent AgNW/PDMS hybrid electrodes. Adv Opt Mater 7:1900632. https://doi.org/10.1002/adom.201900632 [40] Polat EO, Balcı O, Kocabas C (2014) Graphene based flexible electrochromic devices. Sci Rep 4:6484. https://doi.org/10.1038/srep06484 [41] Wang Y, Niu H, Lu Q, Zhang W, Qiao X, Niu H et al (2020) From aerospace to screen: Multifunctional poly(benzoxazine)s based on different triarylamines for electrochromic, explosive detection and resistance memory devices. Spectrochim Acta Part A 225:117524. https://doi.org/10.1016/j.saa.2019.117524 [42] Chen F, Fu X, Zhang J, Wan X (2013) Near-infrared and multicolored electrochromism of solution processable triphenylamine-anthraquinone imide hybrid systems. Electrochim Acta 99:211-218. https://doi.org/10.1016/j.electacta.2013.03.067 [43] Rai V, Singh RS, Blackwood DJ, Zhili D (2020) A review on recent advances in electrochromic devices: a material approach. Adv Eng Mater 22:2000082. https://doi.org/10.1002/adem.202000082 [44] Rakibuddin M, Kim H (2017) Fabrication of MoS2/WO3 nanocomposite films for enhanced electro-chromic performance. New J Chem 41:15327. https://doi.org/10.1039/c7nj03011h [45] Yu S, Wu X, Wang Y, Guo X, Tong L (2017) 2D materials for optical modulation: challenges and opportunities. Adv Mater 29:1606128. https://doi.org/10.1002/adma.201606128 [46] Ahmad K, Shinde MA, Song G, Kim H (2021) Design and fabrication of MoSe2/WO3 thin films for the construction of electrochromic devices on indium tin oxide based glass and flexible substrates. Ceram Int 47:34297-34306. https://doi.org/10.1016/j.ceramint.2021.08.340 [47] Gadgil B, Damlin P, Heinonen M, Kvarnström C (2015) A facile one step electrostatically driven electrocodeposition of polyviologen-reduced graphene oxide nanocomposite films for enhanced electrochromic performance. Carbon 89:53-62. https://doi.org/10.1016/j.carbon.2015.03.020 [48] Novak TG, Kim J, Tiwari AP, Kim J, Lee S, Lee J et al (2020) 2D MoO3 nanosheets synthesized by exfoliation and oxidation of MoS2 for high contrast and fast response time electrochromic devices. ACS Sustainable Chem Eng 8:11276-11282. https://doi.org/10.1021/acssuschemeng.0c03191 [49] Rakibuddin M, Shinde MA, Kim H (2020) Facile sol-gel fabrication of MoS2 bulk, flake and quantum dot for electrochromic device and their enhanced performance with WO3. Electrochim Acta 349:136403. https://doi.org/10.1016/j.electacta.2020.136403 [50] Xue J, Xu H, Wang S, Hao T, Yang Y, Zhang X et al (2021) Design and synthesis of 2D rGO/NiO heterostructure composites for high-performance electrochromic energy storage. Appl Surf Sci 565:150512. https://doi.org/10.1016/j.apsusc.2021.150512 [51] Zhao S, Huang W, Guan Z, Jin B, Xiao D (2019) A novel bis (dihydroxypropyl) viologen-based all-in-one electrochromic device with high cycling stability and coloration efficiency. Electrochim Acta 298:533-540. https://doi.org/10.1016/j.electacta.2018.12.135 [52] Eh ALS, Tan AWM, Cheng X, Magdassi S, Lee PS (2018) Recent advances in flexible electrochromic devices: prerequisites, challenges, and prospects. Energy Technology 6:33-45. https://doi.org/10.1002/ente.201700705 [53] Valurouthu G, Maleski K, Kurra N, Han M, Hantanasirisakul K, Sarycheva A et al (2020) Tunable electrochromic behavior of titanium-based MXenes. Nanoscale 12:14204-14212. https://doi.org/10.1039/D0NR02673E [54] Yeon SY, Seo M, Kim Y, Hong H, Chung TD (2022) Paper-based electrochromic glucose sensor with polyaniline on indium tin oxide nanoparticle layer as the optical readout. Biosens Bioelectron 203:114002. https://doi.org/10.1016/j.bios.2022.114002 [55] Yang P, Sun P, Mai W (2016) Electrochromic energy storage devices. Mater Today 19:394-402. https://doi.org/10.1016/j.mattod.2015.11.007 [56] Xu L, Li D, Ramadan S, Li Y, Klein N (2020) Facile biosensors for rapid detection of COVID-19. Biosens Bioelectron 170:112673. https://doi.org/10.1016/j.bios.2020.112673 [57] Porcel-Valenzuela M, Ballesta-Claver J, de Orbe-Payá I, Montilla F, Capitán-Vallvey LF (2015) Disposable electrochromic polyaniline sensor based on a redox response using a conventional camera: A first approach to handheld analysis. J Electroanal Chem 738:162-169. https://doi.org/10.1016/j.jelechem.2014.12.002 [58] Yun TY, Li X, Bae J, Kim SH, Moon HC (2019) Non-volatile, Li-doped ion gel electrolytes for flexible WO3-based electrochromic devices. Mater Des 162:45-51. https://doi.org/10.1016/j.matdes.2018.11.016 [59] Eggins BR (2002) Chemical sensors and biosensors. John Wiley & Sons, Chichester. [60] Palenzuela J, Vinuales A, Odriozola I, Cabanero G, Grande HJ, Ruiz V (2014) Flexible viologen electrochromic devices with low operational voltages using reduced graphene oxide electrodes. ACS Appl Mater Interfaces 6:14562-14567. https://doi.org/10.1021/am503869b [61] Kuznetsov B, Shumakovich G, Koroleva O, Yaropolov A (2001) On applicability of laccase as label in the mediated and mediatorless electroimmunoassay: effect of distance on the direct electron transfer between laccase and electrode. Biosens Bioelectron 16:73-84. https://doi.org/10.1016/S0956-5663(00)00135-4 [62] Pellitero MA, Guimera A, Kitsara M, Villa R, Rubio C, Lakard B et al (2017) Quantitative self-powered electrochromic biosensors. Chem Sci 8:1995-2002. https://doi.org/10.1039/c6sc04469g [63] Ghindilis AL, Atanasov P, Wilkins E (1997) Enzyme‐catalyzed direct electron transfer: Fundamentals and analytical applications. Electroanalysis 9:661-674. https://doi.org/10.1002/elan.1140090902 [64] Zhang Y, Li X, Li D, Wei Q (2020) A laccase based biosensor on AuNPs-MoS2 modified glassy carbon electrode for catechol detection. Colloids Surf, B 186:110683. https://doi.org/10.1016/j.colsurfb.2019.110683 [65] Fang A, Ng HT, Li SFY (2003) A high-performance glucose biosensor based on monomolecular layer of glucose oxidase covalently immobilised on indium-tin oxide surface. Biosens Bioelectron 19:43-49. https://doi.org/10.1016/S0956-5663(03)00133-7 [66] Valiūnienė A, Virbickas P, Medvikytė G, Ramanavičius A (2020) Urea biosensor based on electrochromic properties of Prussian blue. Electroanalysis 32:503-509. https://doi.org/10.1002/elan.201900556 [67] De Matteis V, Cannavale A, Blasi L, Quarta A, Gigli G (2016) Chromogenic device for cystic fibrosis precocious diagnosis: A “point of care” tool for sweat test. Sens Actuators, B Chem 225:474-480. https://doi.org/10.1016/j.snb.2015.11.080 [68] Marques AC, Santos L, Costa MN, Dantas JM, Duarte P, Gonçalves A et al (2015) Office paper platform for bioelectrochromic detection of electrochemically active bacteria using tungsten trioxide nanoprobes. Sci Rep 5:9910. https://doi.org/10.1038/srep09910 [69] Wang S, Liu Y, Zhu A, Tian Y (2023) In vivo electrochemical biosensors: Recent advances in molecular design, electrode materials, and electrochemical devices. Anal Chem 95:388-406. https://doi.org/10.1021/acs.analchem.2c04541 [70] Jha RK, Bhat N (2020) Recent progress in chemiresistive gas sensing technology based on molybdenum and tungsten chalcogenide nanostructures. Adv Mater Interfaces 7:1901992. https://doi.org/10.1002/admi.201901992 [71] Huang T-Y, Kung C-W, Wei H-Y, Boopathi KM, Chu C-W, Ho K-C (2014) A high performance electrochemical sensor for acetaminophen based on a rGO-PEDOT nanotube composite modified electrode. J Mater Chem A 2:7229-7237. https://doi.org/10.1039/c4ta00309h [72] Ahmad K, Kim HJMSiSP (2022) Synthesis of MoS2/WO3 hybrid composite for hydrazine sensing applications. Mater Sci Semicond Process 148:106803. https://doi.org/10.1016/j.mssp.2022.106803 [73] Haldorai Y, Kim JY, Vilian AE, Heo NS, Huh YS, Han Y-K et al (2016) An enzyme-free electrochemical sensor based on reduced graphene oxide/Co3O4 nanospindle composite for sensitive detection of nitrite. Sens Actuators B 227:92-99. https://doi.org/10.1016/j.snb.2015.12.032 [74] Sharma AK, Pandey S, Sharma KH, Nerthigan Y, Khan MS, Hang D-R et al (2018) Two dimensional α-MoO3-x nanoflakes as bare eye probe for hydrogen peroxide in biological fluids. Anal Chim Acta 1015:58-65. https://doi.org/10.1016/j.aca.2018.01.057 [75] Nasir MZM, Mayorga-Martinez CC, Sofer Zk, Pumera M (2017) Two-dimensional 1T-phase transition metal dichalcogenides as nanocarriers to enhance and stabilize enzyme activity for electrochemical pesticide detection. ACS nano 11:5774-5784. https://doi.org/10.1021/acsnano.7b01364 [76] Parra-Alfambra AM, Casero E, Vázquez L, Quintana C, del Pozo M, Petit-Domínguez MD (2018) MoS2 nanosheets for improving analytical performance of lactate biosensors. Sens Actuators, B Chem 274:310-317. https://doi.org/10.1016/j.snb.2018.07.124 [77] Pathania PK, Saini JK, Vij S, Tewari R, Sabherwal P, Rishi P et al (2018) Aptamer functionalized MoS2-rGO nanocomposite based biosensor for the detection of Vi antigen. Biosens Bioelectron 122:121-126. https://doi.org/10.1016/j.bios.2018.09.015 [78] Lee J, Dak P, Lee Y, Park H, Choi W, Alam MA et al (2014) Two-dimensional layered MoS2 biosensors enable highly sensitive detection of biomolecules. Sci Rep 4:7532. https://doi.org/10.1038/srep07352 [79] Li J, Yan L, Tang X, Feng H, Hu D, Zha F (2016) Robust superhydrophobic fabric bag filled with polyurethane sponges used for vacuum‐assisted continuous and ultrafast absorption and collection of oils from water. Adv Mater Interfaces 3:1500770. https://doi.org/10.1002/admi.201500770 [80] Huang K-J, Liu Y-J, Wang H-B, Gan T, Liu Y-M, Wang L-L (2014) Signal amplification for electrochemical DNA biosensor based on two-dimensional graphene analogue tungsten sulfide-graphene composites and gold nanoparticles. Sens Actuators B 191:828-836. https://doi.org/10.1016/j.snb.2013.10.072 [81] Shuai H-L, Huang K-J, Chen Y-X (2016) A layered tungsten disulfide/acetylene black composite based DNA biosensing platform coupled with hybridization chain reaction for signal amplification. J Mater Chem B 4:1186-1196. https://doi.org/10.1039/C5TB02214B [82] Hu Y, Huang Y, Tan C, Zhang X, Lu Q, Sindoro M et al (2017) Two-dimensional transition metal dichalcogenide nanomaterials for biosensing applications. Materials Chemistry Frontiers 1:24-36. https://doi.org/10.1039/C6QM00195E [83] Fan H, Wei W, Hou C, Zhang Q, Li Y, Li K et al (2023) Wearable electrochromic materials and devices: from visible to infrared modulation. J Mater Chem C 11:7183-7210. https://doi.org/10.1039/D3TC01142A [84] Köç Bakacak P, Kovalska E, Tüzemen S (2024) Graphene for switchable flexible smart windows application. Opt Mater 151:115302. https://doi.org/10.1016/j.optmat.2024.115302 [85] Liu L, Lenferink EJ, Wei G, Stanev TK, Speiser N, Stern NP (2019) Electrical control of circular photogalvanic spin-valley photocurrent in a monolayer semiconductor. ACS Appl Mater Interfaces 11:3334-3341. https://doi.org/10.1021/acsami.8b17476 [86] Li R, Li Y, Tian H, Liao P, Wang H, Zhang S et al (2020) Valley polarization in superacid-treated monolayer MoS2. ACS Appl Electron Mater 2:1981-1988. https://doi.org/10.1021/acsaelm.0c00277 [87] Ma D, Wang J, Wei H, Guo Z (2018) Multifunctional Nanocomposites for Energy and Environmental Applications. Wiley-VCH, Weinheim. [88] Maggini L, Ferreira RR (2021) 2D material hybrid heterostructures: achievements and challenges towards high throughput fabrication. J Mater Chem C 9:15721-15734. https://doi.org/10.1039/D1TC04253J [89] Shanmugam V, Mensah RA, Babu K, Gawusu S, Chanda A, Tu Y et al (2022) A review of the synthesis, properties, and applications of 2D materials. Part Part Syst Char 39:2200031. https://doi.org/10.1002/ppsc.202200031 | 
| No related articles found! | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||