| [1] Amiri V, Roshan H, Mirzaei A, Neri G, Ayesh AI (2020) Nanostructured metal oxide-based acetone gas sensors: a review. Sensors 20:3096. https://doi.org/10.3390/s20113096 [2] Chen C-C, Huang Y-H, Fang J-Y (2022) Hydrophobic deep eutectic solvents as green absorbents for hydrophilic VOC elimination. J Hazard Mater 424:127366. https://doi.org/10.1016/j.jhazmat.2021.127366
 [3] Mirzaei A, Leonardi SG, Neri G (2016) Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: a review. Ceram Int 42:15119-15141. https://doi.org/10.1016/j.ceramint.2016.06.145
 [4] Ruzsányi V, Péter Kalapos M (2017) Breath acetone as a potential marker in clinical practice. J Breath Res 11:024002. https://doi.org/10.1088/1752-7163/aa66d3
 [5] Ma R-J, Li G-D, Zou X, Gao R, Chen H, Zhao X (2018) Bimetallic Pt-Au nanocatalysts decorated In2O3 nests composed of ultrathin nanosheets for type 1 diabetes diagnosis. Sens Actuators, B 270:247-255. https://doi.org/10.1016/j.snb.2018.05.028
 [6] Rabih AAS, Dennis JO, Ahmed AY, Khir MHM, Ahmed MGA, Idris A et al (2018) MEMS-based acetone vapor sensor for non-invasive screening of diabetes. IEEE Sens J 18:9486-9500. https://doi.org/10.1109/JSEN.2018.2870942
 [7] Li Y, Zhang M, Zhang H (2020) Acetone sensors for non-invasive diagnosis of diabetes based on metal-oxide-semiconductor materials. Chin Phys B 29:090702. https://doi.org/10.1088/1674-1056/aba60b
 [8] Haick H, Tang N (2021) Artificial intelligence in medical sensors for clinical decisions. ACS Nano 15:3557-3567. https://doi.org/10.1021/acsnano.1c00085
 [9] Zhang Y, Liu S, Zhao Z-S, Wang Z, Zhang R, Liu L et al (2021) Recent progress in lanthanide metal-organic frameworks and their derivatives in catalytic applications. Inorg Chem Front 8:590-619. https://doi.org/10.1039/D0QI01191F
 [10] Li Y-S, Bux H, Feldhoff A, Li G-L, Yang W-S, Caro J (2010) Controllable synthesis of metal-organic frameworks: from MOF nanorods to oriented MOF membranes. Adv Mater 22:3322-3326. https://doi.org/10.1002/adma.201000857
 [11] Masoomi MY, Morsali A, Dhakshinamoorthy A, Garcia H (2019) Mixed-metal MOFs: unique opportunities in metal-organic framework (MOF) functionality and design. Angew Chem Int Ed 58:15188-15205. https://doi.org/10.1002/anie.201902229
 [12] Bechelany M, Drobek M, Vallicari C, Abou Chaaya A, Julbe A, Miele P (2015) Highly crystalline MOF-based materials grown on electrospun nanofibers. Nanoscale 7:5794-5802. https://doi.org/10.1039/C4NR06640E
 [13] Doonan CJ, Sumby CJ (2017) Metal-organic framework catalysis. CrystEngComm 19:4044-4048. https://doi.org/10.1039/C7CE90106B
 [14] Shahiryar M, Kousar S, Mudassir MA, Irfan M, Shah SAA (2024) Recent approaches in tandem reactions catalyzed by MOF and MOF-based catalysts. J Organomet Chem 1005:122971. https://doi.org/10.1016/j.jorganchem.2023.122971
 [15] Dolgopolova EA, Rice AM, Martin CR, Shustova NB (2018) Photochemistry and photophysics of MOFs: steps towards MOF-based sensing enhancements. Chem Soc Rev 47:4710-4728. https://doi.org/10.1039/C7CS00861A
 [16] Fakhraei Ghazvini M, Vahedi M, Najafi Nobar S, Sabouri F (2021) Investigation of the MOF adsorbents and the gas adsorptive separation mechanisms. J Environ Chem Eng 9:104790. https://doi.org/10.1016/j.jece.2020.104790
 [17] Xu W, Wang L-H, Chen Y, Liu Y (2022) Flexible carbon membrane supercapacitor based on γ-cyclodextrin-MOF. Mater Today Chem 24:100896. https://doi.org/10.1016/j.mtchem.2022.100896
 [18] Hong DH, Shim HS, Ha J, Moon HR (2021) MOF-on-MOF architectures: applications in separation, catalysis, and sensing. Bull Korean Chem Soc 42:956-969. https://doi.org/10.1002/bkcs.12335
 [19] Leelasree T, Selamneni V, Akshaya T, Sahatiya P, Aggarwal H (2020) MOF based flexible, low-cost chemiresistive device as a respiration sensor for sleep apnea diagnosis. J Mater Chem B 8:10182-10189. https://doi.org/10.1039/D0TB01748E
 [20] Bi X, Liu X, Luo L, Liu S, He Y, Zhang L et al (2024) Isolation of sensing units and adsorption groups based on MOF-on-MOF hierarchical structure for both highly sensitive detection and removal of Hg2+. Inorg Chem 63:2224-2233. https://doi.org/10.1021/acs.inorgchem.3c04177
 [21] Zhu W, Xiang G, Shang J, Guo J, Motevalli B, Durfee P et al (2018) Versatile surface functionalization of metal-organic frameworks through direct metal coordination with a phenolic lipid enables diverse applications. Adv Funct Mater 28:1705274. https://doi.org/10.1002/adfm.201705274
 [22] Pei X, Liu J, Song W, Xu D, Wang Z, Xie Y (2023) CO2-switchable hierarchically porous zirconium-based MOF-stabilized pickering emulsions for recyclable efficient interfacial catalysis. Mater 16:1675. https://doi.org/10.3390/ma16041675
 [23] Guo G, Min J, Xu Y, Zhou Y, Xu G (2024) Gas sensing properties of Pd-decorated GeSe monolayer toward formaldehyde and benzene molecules: a first-principles study. Langmuir 40:997-1006. https://doi.org/10.1021/acs.langmuir.3c03221
 [24] Rostami S, Nakhaei Pour A, Salimi A, Abolghasempour A (2018) Hydrogen adsorption in metal-organic frameworks (MOFs): effects of adsorbent architecture. Int J Hydrogen Energy 43:7072-7080. https://doi.org/10.1016/j.ijhydene.2018.02.160
 [25] Shimada T, Yasui T, Yokoyama A, Goda T, Hara M, Yanagida T et al (2018) Biomolecular recognition on nanowire surfaces modified by the self-assembled monolayer. Lab Chip 18:3225-3229. https://doi.org/10.1039/C8LC00438B
 [26] Guo Y, Lu H, Jian X (2024) SiO2-modified APTMS nanocoatings encapsulating FeNi: amplifying microwave absorption and corrosion resistance. Appl Surf Sci 652:159286. https://doi.org/10.1016/j.apsusc.2023.159286
 [27] Wong AKY, Krull UJ (2005) Surface characterization of 3-glycidoxypropyltrimethoxysilane films on silicon-based substrates. Anal Bioanal Chem 383:187-200. https://doi.org/10.1007/s00216-005-3414-y
 [28] Yang L, Zhao T, Boldog I, Janiak C, Yang X-Y, Li Q et al (2019) Benzoic acid as a selector-modulator in the synthesis of MIL-88B(Cr) and nano-MIL-101(Cr). Dalton Trans 48:989-996. https://doi.org/10.1039/C8DT04186E
 [29] Hu C, Yoshida M, Huang P-H, Tsunekawa S, Hou L-B, Chen C-H et al (2021) MIL-88B(Fe)-coated photocatalytic membrane reactor with highly stable flux and phenol removal efficiency. Chem Eng J 418:129469. https://doi.org/10.1016/j.cej.2021.129469
 [30] Teng P, Liu Y, Sun Z, Meng H, Han Y, Zhang X (2023) Co-adsorption and fenton-like oxidation in the efficient removal of methylene blue by MIL-88B@UiO-66 nanoflowers. Dalton Trans 52:10472-10480. https://doi.org/10.1039/D3DT01413D
 [31] Tran TV, Nguyen VH, Nong LX, Nguyen H-TT, Nguyen DTC, Nguyen TT et al (2020) Hexagonal Fe-based MIL-88B nanocrystals with NH2 functional groups accelerating oxytetracycline capture via hydrogen bonding. Surf Interfaces 20:100605. https://doi.org/10.1016/j.surfin.2020.100605
 [32] Wang C-Z, Chen J, Li Q-H, Wang G-E, Ye X-L, Lv J et al (2023) Pore size modulation in flexible metal-organic framework enabling high performance gas sensing. Angew Chem Int Ed 62:e202302996. https://doi.org/10.1002/anie.202302996
 [33] Siraj S, Bansal G, Hasita B, Srungaram S, Sukas KS, et al (2024) MXene/MoS2 piezotronic acetone gas sensor for management of diabetes. ACS Appl Nano Mater 7:11350-11361. https://doi.org/10.1021/acsanm.4c00834
 [34] Pi M, Zheng L, Luo H, Duan S, Li C, Yang J et al (2021) Improved acetone gas sensing performance based on optimization of a transition metal doped WO3 system at room temperature. J Phys D: Appl Phys 54:155107. https://doi.org/10.1088/1361-6463/abd8f0
 [35] Thuy Nguyen LH, Navale ST, Yang DH, Nguyen HTT, Phan TB, Kim J-Y et al (2023) Fe-based metal-organic framework as a chemiresistive sensor for low-temperature monitoring of acetone gas. Sens Actuators, B 388:133799. https://doi.org/10.1016/j.snb.2023.133799
 [36] Nemufulwi MI, Swart HC, Shingange K, Mhlongo GH (2023) ZnO/ZnFe2O4 heterostructure for conductometric acetone gas sensors. Sens Actuators, B 377:133027. https://doi.org/10.1016/j.snb.2022.133027
 [37] Zhang S, Yang M, Liang K, Turak A, Zhang B, Meng D et al (2019) An acetone gas sensor based on nanosized Pt-loaded Fe2O3 nanocubes. Sens Actuators, B 290:59-67. https://doi.org/10.1016/j.snb.2019.03.082
 [38] Sen S, Maity S, Kundu S (2022) Fabrication of Fe doped reduced graphene oxide (rGO) decorated WO3 based low temperature ppm level acetone sensor: unveiling sensing mechanism by impedance spectroscopy. Sens Actuators, B 361:131706. https://doi.org/10.1016/j.snb.2022.131706
 [39] Cao Y, Zhou C, Qin H, Hu J (2020) High-performance acetone gas sensor based on ferrite-DyFeO3. J Mater Sci 55:16300-16310. https://doi.org/10.1007/s10853-020-05194-1
 [40] Qin W, Zhang R, Yuan Z, Xing C, Meng F (2022) Preparation of p-LaFeO /n-Fe O heterojunction composites by one-step hydrothermal method and gas sensing properties for acetone. IEEE Trans Instrum Meas 71:1-9. https://doi.org/10.1109/TIM.2022.3169570
 [41] Singh M, Kaur N, Drera G, Casotto A, Sangaletti L, Comini E (2020) SAM functionalized ZnO nanowires for selective acetone detection: optimized surface specific interaction using APTMS and GLYMO monolayers. Adv Funct Mater 30:2003217. https://doi.org/10.1002/adfm.202003217
 [42] Xu S, Wang M, Chen C-P, Feng S (2023) Sea urchin-like SnO2/α-Fe2O3 heterostructural microspheres for enhanced acetone gas sensing: materials preparation, performance evaluation, and mechanism investigation. Sens Actuators, B 379:133288. https://doi.org/10.1016/j.snb.2023.133288
 [43] Chen Z, Liu W, Si X, Guo J, Huo J, Zhang Z et al (2023) In situ assembly of one-dimensional Pt@ZnO nanofibers driven by a ZIF-8 framework for achieving a high-performance acetone sensor. Nanoscale 15:17206-17215. https://doi.org/10.1039/D3NR04040B
 [44] Zhao Z, Lv Z, Chen Z, Zhou B, Shao Z (2024) α-Fe2O3/TiO2/Ti3C2Tx nanocomposites for enhanced acetone gas sensors. Sensors 24:2604. https://doi.org/10.3390/s24082604
 [45] Jung G, Jeong Y, Hong Y, Wu M, Hong S, Shin W et al (2020) SO2 gas sensing characteristics of FET- and resistor-type gas sensors having WO3 as sensing material. Solid-State Electron 165:107747. https://doi.org/10.1016/j.sse.2019.107747
 [46] Tan X, Chen X, Guo J, Wang L, Dong Z, Li X et al (2024) High performance and highly selective sensing of triethylamine sensors based on Cu-doped MoO3 nanobelts. J Alloys Compd 976:173152. https://doi.org/10.1016/j.jallcom.2023.173152
 [47] Li C, Choi PG, Kim K, Masuda Y (2022) High performance acetone gas sensor based on ultrathin porous NiO nanosheet. Sens Actuators, B 367:132143. https://doi.org/10.1016/j.snb.2022.132143
 [48] Mazzei P, Fusco L, Piccolo A (2014) Acetone-induced polymerisation of 3-aminopropyltrimethoxysilane (APTMS) as revealed by NMR spectroscopy. Magn Reson Chem 52:383-388. https://doi.org/10.1002/mrc.4076
 [49] Yang C, Li Q, Tang L, Xin K, Bai A, Yu Y (2015) Synthesis, photocatalytic activity, and photogenerated hydroxyl radicals of monodisperse colloidal ZnO nanospheres. Appl Surf Sci 357:1928-1938. https://doi.org/10.1016/j.apsusc.2015.09.140
 [50] Xu B, Yang H, Cai Y, Yang H, Li C (2016) Preparation and photocatalytic property of spindle-like MIL-88B(Fe) nanoparticles. Inorg Chem Commun 67:29-31. https://doi.org/10.1016/j.inoche.2016.03.003
 [51] Zorainy MY, Kaliaguine S, Gobara M, Elbasuney S, Boffito DC (2022) Microwave-assisted synthesis of the flexible iron-based MIL-88B metal-organic framework for advanced energetic systems. J Inorg Organomet Polym Mater 32:2538-2556. https://doi.org/10.1007/s10904-022-02353-6
 [52] Liu W, Si X, Chen Z, Xu L, Guo J, Wei L et al (2022) Fabrication of a humidity-resistant formaldehyde gas sensor through layering a molecular sieve on 3D ordered macroporous SnO2 decorated with Au nanoparticles. J Alloys Compd 919:165788. https://doi.org/10.1016/j.jallcom.2022.165788
 |