
Moore and More ›› 2025, Vol. 1 ›› Issue (3): 241-266.DOI: 10.1007/s44275-024-00015-y
Yuhui Song1, Xiaomin Zhang1, Lijian Ning1, Qian Zhou1, Jinkun Feng1, Yanli Wang1, Qiuyu Gong2, Yinjuan Huang1
收稿日期:2024-09-14
修回日期:2024-10-11
接受日期:2024-10-16
出版日期:2025-11-29
发布日期:2024-12-23
通讯作者:
Qiuyu Gong,E-mail:gongqiuyu@xjtu.edu.cn;Yinjuan Huang,E-mail:huangyj@xjtu.edu.cn
基金资助:Yuhui Song1, Xiaomin Zhang1, Lijian Ning1, Qian Zhou1, Jinkun Feng1, Yanli Wang1, Qiuyu Gong2, Yinjuan Huang1
Received:2024-09-14
Revised:2024-10-11
Accepted:2024-10-16
Online:2025-11-29
Published:2024-12-23
Contact:
Qiuyu Gong,E-mail:gongqiuyu@xjtu.edu.cn;Yinjuan Huang,E-mail:huangyj@xjtu.edu.cn
Supported by:摘要: Presponsive smart organic crystalline materials (SOCMs) have emerged as an attractive research topic because of their many advantages, such as well-defined structures, high structural order, and the resulting fast response speeds, as well as high energy conversion efficiency and remarkable dynamic optical/electronic changes or mechanical responses. In this review, we discuss the recent developments in SOCMs based on topochemistry beyond coordination compounds, which include [2 + 2] or [4 + 4] photocycloaddition of anthracene and olefin derivatives as well as 1, 4-addition-polymerization of diacetylenes. The detailed design principles and mechanisms associated with smart behavior, photoresponsive physical and chemical properties (i.e., photochromism, photo fluorochromism, and photodeformation), and structure-property relationships are discussed, along with their advanced applications in exciting fields such as intelligent microrobots, encryption, sensors, photoactuators, data storage, and displays. Finally, we summarize the current developments and discuss the major current challenges and future opportunities in this field. We expect that this review will inspire more innovative research into the development of advanced photoresponsive organic smart crystal materials with fast, accurate, and reversible responses, and promote the further development of smart materials and devices.
Yuhui Song, Xiaomin Zhang, Lijian Ning, Qian Zhou, Jinkun Feng, Yanli Wang, Qiuyu Gong, Yinjuan Huang. Smart organic crystalline materials based on photo-induced topochemistry[J]. Moore and More, 2025, 1(3): 241-266.
Yuhui Song, Xiaomin Zhang, Lijian Ning, Qian Zhou, Jinkun Feng, Yanli Wang, Qiuyu Gong, Yinjuan Huang. Smart organic crystalline materials based on photo-induced topochemistry[J]. Moore and More, 2025, 1(3): 241-266.
| [1] Bhandary S, Beliš M, Kaczmarek AM, Hecke KV (2022) Photomechanical motions in organoboron-based phosphorescent molecular crystals driven by a crystal-state [2 + 2] cycloaddition reaction. J Am Chem Soc 144:22051-22058. https://doi.org/10.1021/jacs.2c09285 [2] Huang Y, Ning L, Zhang X, Zhou Q, Gong Q, Zhang Q (2024) Stimuli-fluorochromic smart organic materials. Chem Soc Rev 53:1090-1166. https://doi.org/10.1039/D2CS00976E [3] Tang Y, Chen X (2022) Marching towards flexible intelligent materials. Sci China Mater 65:1991-1993. https://doi.org/10.1007/s40843-022-2161-9 [4] Sagara Y, Yamane S, Mitani M, Weder C, Kato T (2016) Mechanoresponsive luminescent molecular assemblies: an emerging class of materials. Adv Mater 28:1073-1095. https://doi.org/10.1002/adma.201502589 [5] Praveen VK, Vedhanarayanan B, Mal A, Mishra RK, Ajayaghosh A (2020) Self-assembled extended π-systems for sensing and security applications. Acc Chem Res 53:496-507. https://doi.org/10.1021/acs.accounts.9b00580 [6] Zhang J, He B, Hu Y, Alam P, Zhang H, Lam JWY et al (2021) Stimuli-responsive AIEgens. Adv Mater 33:2008071. https://doi.org/10.1002/adma.202008071 [7] Kortekaas L, Browne WR (2019) The evolution of spiropyran: fundamentals and progress of an extraordinarily versatile photochrome. Chem Soc Rev 48:3406-3424. https://doi.org/10.1039/C9CS00203K [8] Seeboth A, Lötzsch D, RuhmannR MO (2014) Thermochromic polymers-function by design. Chem Rev 114:3037-3068. https://doi.org/10.1021/cr400462e [9] Park S-H, Kwon N, Lee J-H, Yoon J, Shin I (2020) Synthetic ratiometric fluorescent probes for detection of ions. Chem Soc Rev 49:143-179. https://doi.org/10.1039/C9CS00243J [10] Wang Y, Zhang Y-M, Zhang SX-A (2021) Stimuli-induced reversible proton transfer for stimuli-responsive materials and devices. Acc Chem Res 54:2216-2226. https://doi.org/10.1021/acs.accounts.1c00061 [11] Yan D, Wang Z, Zhang Z (2022) Stimuli-responsive crystalline smart materials: from rational design and fabrication to applications. Acc Chem Res 55:1047-1058. https://doi.org/10.1021/acs.accounts.2c00027 [12] Xu F, Feringa BL (2023) Photoresponsive supramolecular polymers: from light-controlled small molecules to smart materials. Adv Mater 35:2204413. https://doi.org/10.1002/adma.202204413 [13] Ping X, Zhan J, Zhu Y, Wu Y, Hu C, Pan J et al (2023) Photoactivation of solid-state fluorescence through controllable intermolecular [2+2] photodimerization. Chem Eur J 29:e202301520. https://doi.org/10.1002/chem.202301520 [14] Peng J, Han C, Zhang X, Jia J, Bai J, Zhang Q et al (2023) Mechanical effects of elastic crystals driven by natural sunlight and force. Angew Chem Int Ed 62:e202311348. https://doi.org/10.1002/anie.202311348 [15] Liu C, Ye K, Wei ZL, Peng J, Xiao H, Sun J et al (2022) Fast photoactuation of elastic crystals based on 3-(naphthalen-1-yl)-2-phenylacrylonitriles triggered by subtle photoisomerization. Chem C 10:14273-14281. https://doi.org/10.1039/D2TC02667H [16] Zhang Q, Wang Y, Braunstein P, Lang J-P (2024) Construction of olefinic coordination polymer single crystal platforms: precise organic synthesis, in situ exploration of reaction mechanisms and beyond. Chem Soc Rev 53:5227-5263. https://doi.org/10.1039/D3CS01050C [17] Bhogala BR, Captain B, Parthasarathy A, Ramamurthy V (2010) Thiourea as a template for photodimerization of azastilbenes. J Am Chem Soc 132:13434-13442. https://doi.org/10.1021/ja105166d [18] Hoenders D, Ludwanowski S, Barner-Kowollik C, Walther A (2024) Cyclodextrin ‘chaperones’ enable quasi-ideal supramolecular network formation and enhanced photodimerization of hydrophobic, red-shifted photoswitches in water. Angew Chem Int Ed e202405582. https://doi.org/10.1002/anie.202405582 [19] Wu Y, Ping X, Yao C, Wu P, Han Z, Peng X et al (2024) Photoinduced fluorescence modulation through controllable intramolecular [2+2] photocycloaddition in single molecules and molecular aggregates. Chem Commun 60:1301-1304. https://doi.org/10.1039/D3CC05846H [20] Kory MJ, Wörle M, Weber T, Payamyar P, Poll SW, Dshemuchadse J et al (2014) Gram-scale synthesis of two-dimensional polymer crystals and their structure analysis by X-ray diffraction. Nat Chem 6:779-784. https://doi.org/10.1038/nchem.2007 [21] Seki T, Sakurada K, Muromoto M, Ito H (2015) Photoinduced single-crystal-to-single-crystal phase transition and photosalient effect of a gold(I) isocyanide complex with shortening of intermolecular aurophilic bonds. Chem Sci 6:1491-1497. https://doi.org/10.1039/C4SC02676D [22] Yang Y-H, Chen Y-S, Chuang W-T, Yang J-S (2024) Bifurcated polymorphic transition and thermochromic fluorescence of a molecular crystal involving three-dimensional supramolecular gear rotation. J Am Chem Soc 146:8131-8141. https://doi.org/10.1021/jacs.3c12454 [23] Diao Z-J, Liu S-Y, Wen H, Liu G, Yang T, Li J-J et al (2023) Detachable porous organic polymers responsive to light and heat. Angew Chem Int Ed e202301739. https://doi.org/10.1002/anie.202301739 [24] Ko H, Kang D-G, Choi Y-J, Wi Y, Kim S, Pham HH et al (2024) Polarization-dependent thin films with biaxial anisotropic absorption constructed by a single coating and subsequent topochemical polymerization of chromophores. J Am Chem Soc 146:4393-4401. https://doi.org/10.1021/jacs.3c06444 [25] Zhu Y, Shao P, Hu L, Sun C, Li J, Feng X et al (2021) Construction of interlayer conjugated links in 2D covalent organic frameworks via topological polymerization. J Am Chem Soc 143:7897-7902. https://doi.org/10.1021/jacs.1c02932 [26] Bhandary S, Beliš M, Shukla R, Bourda L, Kaczmarek AM, Hecke KV (2024) Single-crystal-to-single-crystal photosynthesis of supramolecular organoboron polymers with dynamic effects. J Am Chem Soc 146:8659-8667. https://doi.org/10.1021/jacs.4c00978 [27] Zhang S, Zhang L, Chen A, An Y, Chen X-M, Yang H et al (2024) Cucurbit[8]uril-mediated supramolecular heterodimerisation and photoinduced [2+2] heterocycloaddition to generate unexpected [2]rotaxanes. Angew Chem Int Ed e202410130. https://doi.org/10.1002/anie.202410130 [28] Wu W, Chen K, Wang T, Wang N, Huang X, Zhou L et al (2023) Stimuli-responsive flexible organic crystals. J Mater Chem C 11:2026-2052. https://doi.org/10.1039/D2TC04642C [29] Fan L-X, Chen L, Zhang H-Y, Xu W-H, Wang X-L, Xu S et al (2023) Dual photo-responsive diphenylacetylene enables PET in-situ upcycling with reverse enhanced UV-resistance and strength. Angew Chem Int Ed e202314448. https://doi.org/10.1002/anie.202314448 [30] Huang L, Yang Y, Shao J, Xiong G, Wang H, Nishiura M et al (2024) Synthesis of tough and fluorescent self-healing elastomers by scandium-catalyzed terpolymerization of pyrenylethenylstyrene, ethylene, and anisylpropylene. J Am Chem Soc 146:2718-2727. https://doi.org/10.1021/jacs.3c12342 [31] Pan G, Wu Z, Liu Z, Xu B, Tian W (2023) Photoinduced fluorescence switching in molecular aggregates by topological [2+2] cycloaddition. Angew Chem Int Ed e202303152. https://doi.org/10.1002/anie.202303152 [32] Shi X, Zhang K, Chen J, Qian H, Huang Y, Jiang B (2023) Octopi tentacles-inspired architecture enables self-healing conductive rapid-photo-responsive materials for soft multifunctional actuators. Adv Funct Mater 34:2311567. https://doi.org/10.1002/adfm.202311567 [33] Wei X, Li B, Yang Z, Zhong R, Wang Y, Chen Y et al (2021) Programmable photoresponsive materials based on a single molecule via distinct topochemical reactions. Chem Sci 2:15588-15595. https://doi.org/10.1039/D1SC04053G [34] George GC, Hutchins KM (2023) Solid-state [4+4] cycloaddition and cycloreversion with use of unpaired hydrogen-bond donors to achieve solvatomorphism and stabilization. Chem Eur J 29 [35] Li M, Schlüter AD, Sakamoto J (2012) Solid-state photopolymerization of a shape-persistent macrocycle with two 1,8-diazaanthracene units in a single crystal. J Am Chem Soc 134:1721-11725. https://doi.org/10.1021/ja3038905 [36] Hema K, Ravi A, Raju C, Pathan JR, Rai R, Sureshan KM (2021) Topochemical polymerizations for the solid-state synthesis of organic polymers. Chem Soc Rev 50:4062-4099. https://doi.org/10.1039/D0CS00840K [37] Biradha K, Santra R (2013) Crystal engineering of topochemical solid state reactions. Chem Soc Rev 42(950):967. https://doi.org/10.1039/C2CS35343A [38] Schmidt GMJ (1971) Photodimerization in the solid state. Pure Appl Chem 27:647-678. https://doi.org/10.1351/pac197127040647 [39] Grossmann L, King BT, Reichlmaier S, Hartmann N, Rosen J, Heckl WM et al (2021) On-surface photopolymerization of two-dimensional polymers ordered on the mesoscale. Nat Chem 13:730-736. https://doi.org/10.1038/s41557-021-00709-y [40] Kissel P, Murray DJ, Wulftange WJ, Catalano VJ, King BT (2014) A nanoporous two-dimensional polymer by single-crystal-to-single-crystal photopolymerization. Nat Chem 6:774-778. https://doi.org/10.1038/nchem.2008 [41] Sun C, Oppenheim JJ, Skorupskii G, Yang L, Dincă M (2022) Reversible topochemical polymerization and depolymerization of a crystalline 3D porous organic polymer with C-C bond linkages. Chem 8:3215-3224. https://doi.org/10.1016/j.chempr.2022.07.028 [42] Guo Q-H, Jia M, Liu Z, Qiu Y, Chen H, Shen D et al (2020) Single-crystal polycationic polymers obtained by single-crystal-tosingle-crystal photopolymerization. J Am Chem Soc 142:6180-6187. https://doi.org/10.1021/jacs.9b13790 [43] Hu F, Hao W, Mücke D, PanQ LZ, Qi H et al (2021) Highly efficient preparation of single-layer two-dimensional polymer obtained from single-crystal to single-crystal synthesis. J Am Chem Soc 143:5636-5642. https://doi.org/10.1021/jacs.1c00907 [44] Tanaka K, Toda F (2000) Solvent-free organic synthesis. Chem Rev 100:1025-1074. https://doi.org/10.1021/cr940089p [45] Toda F (2005) Organic solid-state reactions, in top. Curr Chem 254. https://doi.org/10.1007/b100997 [46] Green BS, Lahav M, Rabinovich D (1979) Asymmetric synthesis via reactions in chiral crystals. Acc Chem Res 12:191-197. https://doi.org/10.1021/ar50138a001 [47] Vittal JJ, Quah HS (2017) Photochemical reactions of metal complexes in the solid state. Dalton Trans 46:7120-7140. https://doi.org/10.1039/C7DT00873B [48] Chung JW, You Y, Huh HS, An B-K, Yoon S-J, Kim SH et al (2009) Shear- and UV-induced fluorescence switching in stilbenic π-dimer crystals powered by reversible [2 + 2] cycloaddition. J Am Chem Soc 131:8163-8172. https://doi.org/10.1021/ja900803d [49] Khan S, Dutta B, Mir MH (2020) Impact of solid-state photochemical [2+2] cycloaddition on coordination polymers for diverse applications. Dalton Trans 49:9556-9563. https://doi.org/10.1039/D0DT01534B [50] Hema K, Sureshan KM (2019) Topochemical azide-alkyne cycloaddition reaction. Acc Chem Res 52:3149-3163. https://doi.org/10.1021/acs.accounts.9b00398 [51] Yuhara K, Tanaka K (2024) The photosalient effect and thermochromic luminescence based on o-carborane-assisted π-stacking in the crystalline state. Angew Chem Int Ed 63:e202319712. https://doi.org/10.1002/anie.202319712 [52] Morimoto K, Kitagawa D, Sotome H, Ito S, Miyasaka H, Kobatake S (2022) Edge-to-center propagation of photochemical reaction during single-crystal-to-single-crystal photomechanical transformation of 2,5-distyrylpyrazine crystals. Angew Chem Int Ed 61:e202212290. https://doi.org/10.1002/anie.202212290 [53] Li S, Lu B, Fang X, Yan D (2020) Manipulating light-induced dynamic macro-movement and static photonic properties within 1D isostructural hydrogen-bonded molecular cocrystals. Angew Chem Int Ed 59:22623-22630. https://doi.org/10.1002/anie.202009714 [54] Li P, Wang J, Li P, Lai L, Yin M (2021) Minor alkyl modifications for manipulating the fluorescence and photomechanical properties in molecular crystals. Mater Chem Front 5:1355-1363. https://doi.org/10.1039/D0QM00843E [55] Schluter AD, Weber T, Hofer G (2020) How to use X-ray diffraction to elucidate 2D polymerization propagation in single crystals. Chem Soc Rev 49:5140-5158. https://doi.org/10.1039/D0CS00176G [56] Han Y-F, Jin G-X (2014) Half-sandwich iridium- and rhodium-based organometallic architectures: rational design, synthesis, characterization, and applications. Acc Chem Res 47:3571-3579. https://doi.org/10.1021/ar500335a [57] Medishetty R, Park I-H, Lee SS, Vittal JJ (2016) Solid-state polymerisation via [2+2] cycloaddition reaction involving coordination polymers. Chem Commun 52:3989-4001. https://doi.org/10.1039/C5CC08374E [58] Jang D, Heo J-M, Jannah F, Khazi ML, Son YJ, Noh J et al (2022) Stimulus-responsive tubular conjugated polymer 2D nanosheets. Angew Chem Int Ed e202211465. https://doi.org/10.1002/anie.202211465 [59] Naumov P, Chizhik S, Panda MK, Nath NK, Boldyreva E (2015) Mechanically responsive molecular crystals. Chem Rev 115:12440-12490. https://doi.org/10.1021/acs.chemrev.5b00398 [60] Naumov P, Karothu DP, Ahmed E, Catalano L, Commins P, Halabi JM et al (2020) The rise of the dynamic crystals. J Am Chem Soc 142:13256-13272. https://doi.org/10.1021/jacs.0c05440 [61] Rath B, Vittal JJ (2022) Photoreactive crystals exhibiting [2 + 2] photocycloaddition reaction and dynamic effects. Acc Chem Res 55:1445-1455. https://doi.org/10.1021/acs.accounts.2c00107 [62] Kole GK, Tan GK, Vittal JJ (2010) Anion-controlled stereoselective synthesis of cyclobutane derivatives by solid-state [2 + 2] cycloaddition reaction of the salts of trans-3-(4-Pyridyl) acrylic acid. Org Lett 12:128-131. https://doi.org/10.1021/ol9025233 [63] Xu T-Y, Tong F, Xu H, Wang M-Q, Tian H, Qu D-H (2022) Engineering photomechanical molecular crystals to achieve extraordinary expansion based on solid-state [2 + 2] photocycloaddition. J Am Chem Soc 144:6278-6290. https://doi.org/10.1021/jacs.1c12485 [64] Samanta R, Kitagawa D, Mondal A, Bhattacharya M, Annadhasan M, Mondal S et al (2020) Mechanical actuation and patterning of rewritable crystalline monomer-polymer heterostructures via topochemical polymerization in a dual-responsive photochromic organic material. ACS Appl Mater Interfaces 12:16856-16863. https://doi.org/10.1021/acsami.9b23189 [65] Khan S, Akhtaruzzaman MR, Ekka A, Mir MH (2021) Mechanical motion in crystals triggered by solid state photochemical [2+2] cycloaddition reaction. Chem Asian J 16:2806-2816. https://doi.org/10.1002/asia.202100807 [66] Payamyar P, King BT, Öttinger HC, Schlüter AD (2016) Two-dimensional polymers: concepts and perspectives. Chem Commun 52:18-34. https://doi.org/10.1039/C5CC07381B [67] Ramamurthy V, Sivaguru J (2016) Supramolecular photochemistry as a potential synthetic tool: photocycloaddition. Chem Rev 116:9914-9993. https://doi.org/10.1021/acs.chemrev.6b00040 [68] Rath BB, Vittal JJ (2021) Dynamic effects in crystalline coordination polymers. CrystEngComm 23:5738-5752. https://doi.org/10.1039/D1CE00441G [69] Yu J-G, Gan M-M, Baia S, Han Y-F (2019) Photodriven solid-state multiple [2 + 2] cycloaddition strategies for the construction of polycyclobutane derivatives. CrystEngComm 21:4673-4683. https://doi.org/10.1039/C9CE00971J [70] Liebermann C, Bergami O (1889) Berichte der deutschen chemischen gesellschaft. Chem Ges 22:782-786. https://doi.org/10.1002/cber.188902201171 [71] Chalek KR, Dong X, Tong F, Kudla RA, Zhu L, Gill AD et al (2021) Bridging photochemistry and photomechanics with NMR crystallography: the molecular basis for the macroscopic expansion of an anthracene ester nanorod. Chem Sci 12:453-463. https://doi.org/10.1039/D0SC05118G [72] Nishiuchi T, Kisaka K, Kubo T (2021) Synthesis of anthracene-based cyclic p-clusters and elucidation of their properties originating from congested aromatic planes. Angew Chem Int Ed 60:5400-5406. https://doi.org/10.1002/anie.202013349 [73] Giri P, Panda AP, Panda MK (2024) Photoinduced puffing with large volume expansion and photomechanical motions induced by topochemical [4+4] reactions in molecular crystal solvates. Chem Eur J 30:e202303836. https://doi.org/10.1002/chem.202303836 [74] Chen Y-S, Wang C-H, Hu Y-H, Lu C-Y, Yang J-S (2023) An elastic organic crystal enables macroscopic photoinduced crystal elongation. J Am Chem Soc 145:6024-6028. https://doi.org/10.1021/jacs.2c13210 [75] Beyer H, Kory MJ, Hofer G, Stemmer A, Schlüter AD (2017) Exfoliation of two-dimensional polymer single crystals into thin sheets and investigations of their surface structure by high-resolution atomic force microscopy. Nanoscale 9:9481-9490. https://doi.org/10.1039/C7NR02210G [76] Servalli M, Trapp N, Schlüter AD (2018) Single-crystal-to-single-crystal (SCSC) linear polymerization of a desymmetrized anthraphane. Chem Eur J 24:15003-15012. https://doi.org/10.1002/chem.201802513 [77] Wang Z, Dong S, Yuan W, Li J, Ma X, Liu F et al (2024) Photo-modulated ionic polymer as an adaptable electron transport material for optically switchable pixel-free displays. Adv Mater 36:2309593. https://doi.org/10.1002/adma.202309593 [78] Li C, Liu J, Qiu X, Yang X, Huang X, Zhang X (2023) Photoswitchable and reversible fluorescent eutectogels for conformal information encryption. Angew Chem Int Ed 62:e202313971. https://doi.org/10.1002/anie.202313971 [79] Hsu T-G, Chou H-C, Liang M-J, Lai Y-Y, Cheng Y-J (2019) Regio-and stereo-selective [4+4] photodimerization of angular-shaped dialkyltetracenedithiophene. Chem Commun 55:381-384. https://doi.org/10.1039/C8CC09485C [80] Yamada S, Kawamura C (2012) [4 + 4] Photodimerization of azaanthracenes in both solution and solid phase controlled by cation-π interactions. Org Lett 14:1572-1575. https://doi.org/10.1021/ol3003089 [81] Huang Z-A, Chen C, Yang X-D, FanX-B ZW, Tung C-H et al (2016) Synthesis of oligoparaphenylene-derived nanohoops employing an anthracene photodimerization-cycloreversion strategy. J Am Chem Soc 138:11144-11147. https://doi.org/10.1021/jacs.6b07673 [82] Yamamoto T, Yagyu S, Tezuka Y (2016) Light-and heat-triggered reversible linear-cyclic topological conversion of telechelic polymers with anthryl end groups. J Am Chem Soc 138:3904-3911. https://doi.org/10.1021/jacs.6b00800 [83] Kole GK, Kojima T, Kawano M, Vittal JJ (2014) Reversible single-crystal-to-single-crystal photochemical formation and thermal cleavage of a cyclobutane ring. Angew Chem Int Ed 53:2143-2146. https://doi.org/10.1002/anie.201306746 [84] Yelgaonkar SP, Campillo-Alvarado G, MacGillivray LR (2020) Phototriggered guest release from a nonporous organic crystal: remarkable single-crystal-to-single-crystal transformation of a binary cocrystal solvate to a ternary cocrystal. J Am Chem Soc 142(49):20772-20777. https://doi.org/10.1021/jacs.0c09732 [85] Zhang Y, Takeda T, Hoshino N, Akutagawa T (2023) Crystal design of photodimerization and proton dynamics in stilbene dicarboxylate salts. Cryst Growth Des 23:9121-9131. https://doi.org/10.1021/acs.cgd.3c01212 [86] Takahashi S, Miura H, Kasai H, Okada S, Oikawa H, Nakanishi H (2002) Single-crystal-to-single-crystal transformation of diolefin derivatives in nanocrystals. J Am Chem Soc 124:10944-10945. https://doi.org/10.1021/ja026564f [87] Lange RZ, Hofer G, Weber T, Schlüter AD (2017) A two-dimensional polymer synthesized through topochemical [2 + 2]-cycloaddition on the multigram scale. J Am Chem Soc 139:2053-2059. https://doi.org/10.1021/jacs.6b11857 [88] Lange RZ, Synnatschke K, Qi H, Huber N, Hofer G, Liang B et al (2020) Enriching and quantifying porous single layer 2D polymers by exfoliation of chemically modified van der waals crystals. Angew Chem Int Ed 59:5683-5695. https://doi.org/10.1002/anie.201912705 [89] Ding Y, Guo J, He X, Tao W, Shi Y, Xu J et al (2023) Tuned intra- and intermolecular photoreactions of tridentate cyanostilbenes with distinct aggregated-state photomechanical and dispersed-state photochromic behaviors. Adv Funct Mater 33:2212886. https://doi.org/10.1002/adfm.202212886 [90] Yuan W, Chen L, Yuan C, Zhang Z, Chen X, Zhang X et al (2023) Cooperative supramolecular polymerization of styrylpyrenes for color-dependent circularly polarized luminescence and photocycloaddition. Nat Commun 14:8022. https://doi.org/10.1038/s41467-023-43830-x [91] Richardson BJ, Zhang C, Rauthe P, Unterreiner A-N, Golberg DV, Poad BLJ et al (2023) Peptide self-assembly controlled photoligation of polymers. J Am Chem Soc 145:15981-15989. https://doi.org/10.1021/jacs.3c03961 [92] Xiang B, Wang X, Teng F, Liu L, Li M, Meng X et al (2023) Regulation of two-dimensional platelet micelles by dynamic changing of polymer topological architectures upon light irradiation. Macromolecules 56:9685-9696. https://doi.org/10.1021/acs.macromol.3c01720 [93] Carroll JA, Pashley-Johnson F, Frisch H, Barner-Kowollik C (2024) Photochemical action plots reveal red-shifted wavelength-dependent photoproduct distributions. Chem Eur J 30:e202304174. https://doi.org/10.1002/chem.202304174 [94] Tong F, Xu W, Guo T, Lui BF, Hayward RC, Palffy-Muhoray P et al (2020) Photomechanical molecular crystals and nanowire assemblies based on the [2+2] photodimerization of a phenylbutadiene derivative. J Mater Chem C 8:5036-5044. https://doi.org/10.1039/C9TC06946A [95] Yue Y, Dai J, Jin L, Liu C, Sun J, Ye K et al (2023) The factor beyond schmidt’s criteria impacting the photoinduced [2+2] cycloaddition reactivity and photoactuation of molecular crystals based on cyclic chalcone analogues. Chem Eur J 29:e202301525. https://doi.org/10.1002/chem.202301525 [96] Bhandary S, Beliš M, Bourda L, Kaczmarek AM, Hecke KV (2023) Visible light-fueled mechanical motions with dynamic phosphorescence induced by topochemical [2+2] reactions in organoboron crystals. Angew Chem Int Ed 62:e202304722. https://doi.org/10.1002/anie.202304722 [97] Kannan TS, Munan S, Kathiresan M, Samanta A, Kole GK (2023) Solid-state photodimerization reaction with photosalient effect and photophysical and electrochemical properties of n-methylated 1-naphthylvinyl-4-quinoline. Cryst Growth Des 23:8261-8269. https://doi.org/10.1021/acs.cgd.3c00955 [98] Kusumoto S, Wakabayashi K, Rakumitsu K, Harrowfield J, Kim Y and Koide Y (2024) Photo-and stress-induced bending of (E)-1,2-bis(pyridinium-4-yl)ethene dinitrate crystals. Chem Eur J e202401564. https://doi.org/10.1002/chem.202401564 [99] Nag S, Emmerling F, Tothadi S, Bhattacharya B, Ghosh S (2024) Distinct photomechanical responses of two new 1,3-dimethylbarbituric acid derivative crystals. CrystEngComm 26:2871-2882. https://doi.org/10.1039/D4CE00233D [100] Peng J, Ye K, Liu C, Sun J, Lu R (2019) The photomechanic effects of the molecular crystals based on 5-chloro-2-(naphthalenylvinyl)benzoxazols fueled by topo-photochemical reactions. J Mater Chem C 7:5433-5441. https://doi.org/10.1039/C9TC01084J [101] Wang H, Xing H, Gong J, Zhang H, Zhang J, Wei P et al (2020) ‘“Living”’ luminogens: light driven ACQ-to-AIE transformation accompanied with solid-state actuation. Mater Horiz 7:1566-1572. https://doi.org/10.1039/D0MH00447B [102] Guo Y, Cheng X, He Z, Zhou Z, Miao T, Zhang W (2023) Simultaneous chiral fixation and chiral regulation endowed by dynamic covalent bonds. Angew Chem Int Ed 62:e202312259 [103] Yamada S, Uematsu N, Yamashita K (2007) Role of cation-π interactions in the photodimerization of trans-4-styrylpyridines. J Am Chem Soc 129:12100-12101. https://doi.org/10.1021/ja074874y [104] Li F, Zhuang J, Jiang G, Tang H, Xia A, Jiang L et al (2008) A rewritable optical data storage material system by [2 + 2] photocycloreversion-photocycloaddition. Chem Mater 20:1194-1196. https://doi.org/10.1021/cm702351n [105] Kaiser J, Wegner G, Fischer EW (1972) Topochemical reactions of monomers with conjugated triple-bonds VII mechanism of transition from monomer to polymer phase during solid-state polymerisation. Isr J Chem 10:157-171. https://doi.org/10.1002/ijch.197200022 [106] Baughman RH (1974) Solid-state synthesis of large polymer single crystals. J Polym Sci 12:1511-1535. https://doi.org/10.1002/pol.1974.180120801 [107] Young RJ, Petermann J (1981) Structure and mechanical properties of polydiacetylene single crystals. Makromol Chem 182:621-625. https://doi.org/10.1002/MACP.1981.021820230 [108] Foley JL, Li L, Sandman DJ, Vela MJ, Foxman BM, Albro R et al (1999) Side group interactions in a polydiacetylene single crystal. J Am Chem Soc 121:7262-7263. https://doi.org/10.1021/ja990436i [109] Sun A, Lauher JW, Goroff NS (2006) Preparation of poly(diiododiacetylene), an ordered conjugated polymer of carbon and iodine. Science 312:1030-1034. https://doi.org/10.1126/science.1124621 [110] Yoon B, Shin H, Kang E-M, Cho DW, Shin K, Chung H et al (2013) Inkjet-compatible single-component polydiacetylene precursors for thermochromic paper sensors. ACS Appl Mater Interfaces 5:4527-4535. https://doi.org/10.1021/am303300g [111] Yao Y, Dong H, Liu F, Russell TP, Hu W (2017) Approaching intra- and interchain charge transport of conjugated polymers facilely by topochemical polymerized single crystals. Adv Mater 29:1701251. https://doi.org/10.1002/adma.201701251 [112] Takahashi S, Yagai S (2022) Harmonizing topological features of self-assembled fibers by rosette-mediated random supramolecular copolymerization and self-sorting of monomers by photo-cross-linking. J Am Chem Soc 144:13374-13383. https://doi.org/10.1021/jacs.2c05484 [113] Matsumoto A, Nagahama S, Odani T (2000) Molecular design and polymer structure control based on polymer crystal engineering. topochemical polymerization of 1,3-diene mono- and dicarboxylic acid derivatives bearing a naphthylmethylammonium group as the countercation. J Am Chem Soc 122:9109-9119. https://doi.org/10.1021/ja001093n [114] Nakamoto S, Tashiro K, Matsumoto A (2003) Vibrational spectroscopic study on the molecular deformation mechanism of a poly(trans-1,4-diethyl muconate) single crystal subjected to tensile stress. Macromolecules 36:109-117. https://doi.org/10.1021/ma021090q [115] Dou L, Zheng Y, Shen X, Wu G, Fields K, Hsu W-C et al (2014) Single-crystal linear polymers through visible light-triggered topochemical quantitative polymerization. Science 343:272-277. https://doi.org/10.1126/science.1245875 [116] Wei Z, Wang X, Seo B, Luo X, Hu Q, Jones J et al (2022) Side-chain control of topochemical polymer single crystals with tunable elastic modulus. Angew Chem Int Ed e202213840. https://doi.org/10.1002/anie.202213840 [117] Guo J, Fan J, Liu X, Zhao Z, Tang BZ (2020) Dancing brightly under light: intriguing photomechanical luminescence in constructing through-space conjugated AIEgens. Angew Chem Int Ed 59:8828-8832. https://doi.org/10.1002/anie.201913383 [118] Huang Y, Gao R-H, Liu M, Chen L-X, Ni X-L et al (2021) Cucurbit[n]uril-based supramolecular frameworks assembled through outer-surface interactions. Angew Chem Int Ed 60:15166-15191. https://doi.org/10.1002/anie.202002666 [119] Park SK, Diao Y (2020) Martensitic transition in molecular crystals for dynamic functional materials. Chem Soc Rev 49:8287-8314. https://doi.org/10.1039/D0CS00638F [120] Anwar J, Tuble SC, Kendrick J (2007) Concerted molecular displacements in a thermally-induced solid-state transformation in crystals of DL-norleucine. J Am Chem Soc 129:2542-2547. https://doi.org/10.1021/ja066686y [121] Chung H, Chen S, Sengar N, Davies DW, Garbay G, Geerts YH et al (2019) Single atom substitution alters the polymorphic transition mechanism in organic electronic crystals. Chem Mater 31:9115-9126. https://doi.org/10.1021/acs.chemmater.9b03436 [122] Wegner G (1969) Topochemical reactions of monomers with conjugated triple bonds. I. Polymerization of 2.4-hexadiyn-1.6-diols derivatives in crystalline state. Z Naturforsch B 24:824-826. https://doi.org/10.1515/znb-1969-0708 [123] Hasegawa M, Suzuki Y (1967) Four-center type photopolymerization in the solid state: Poly-2,5-distrylpyrazine. J Polym Sci Part B Polym Lett 5:813-815. https://doi.org/10.1002/pol.1967.110050915 [124] Zhou S, Zhang M, Yuan Y, Ren l, Chen Y, Li W et al (2024) Visible light [2 + 2] cycloadditions of thermoresponsive dendronized styryltriazines to exhibit tunable microconfinement. ACS Macro Lett 13:866-873. https://doi.org/10.1021/acsmacrolett.4c00259 [125] Yang S-Y, Naumov P, Fukuzumi S (2009) Topochemical limits for solid-state photoreactivity by fine tuning of the π-π interactions. J Am Chem Soc 131:7247-7249. https://doi.org/10.1021/ja902094b [126] Zhang X, Hou L, Samorì P (2016) Coupling carbon nanomaterials with photochromic molecules for the generation of optically responsive materials. Nat Commun 7:11118. https://doi.org/10.1038/ncomms11118 |
| [1] | Yixin Zhu, Qing Wan. Lithium niobate/lithium tantalate single-crystal thin films for post-moore era chip applications[J]. Moore and More, 2025, 1(1): 62-78. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||