[1] Johnson NF, Jajodia S (1998) Exploring steganography: seeing the unseen. Computer 31(2):26-34. https://doi.org/10.1109/MC.1998.4655281 [2] Sobar MR, Wijaya A (2016) Behavior determinant based cervical cancer early detection with machine learning algorithm. Adv Sci Lett 22:3120-3123. https://doi.org/10.1166/asl.2016.7980 [3] Liu C, Ding W, Hu Y, Zhang B, Liu J, Guo G, Doermann D (2021) Rectified binary convolutional networks with generative adversarial learning. Int J Comput Vision 129(4):998-1012. https://doi.org/10.1007/s11263-020-01417-9 [4] Harn L, Yang S (1993) ID-based cryptographic schemes for user identification, digital signature, and key distribution. IEEE J Sel Area Comm 11(5):757-760. https://doi.org/10.1109/49.223877 [5] Gupta BB, Gaurav A, Arya V (2024) Secure and privacy-preserving decentralized federated learning for personalized recommendations in consumer electronics using blockchain and homomorphic encryption. IEEE T Consum Electr 70(1):2546-2556. https://doi.org/10.1109/TCE.2023.3329480 [6] Liu Z, Großschädl J, Hu Z, Järvinen K, Wang H, Verbauwhede I (2017) Elliptic curve cryptography with efficiently computable endomorphisms and its hardware implementations for the internet of things. IEEE T Comput 66(5):773-785. https://doi.org/10.1109/TC.2016.2623609 [7] Dey J, Dutta R (2023) Progress in multivariate cryptography: systematic review, challenges, and research directions. ACM Comput Surv 55(12):1-34. https://doi.org/10.1145/3571071 [8] Morrison M, Ranganathan N (2014) Synthesis of dual-rail adiabatic logic for low power security applications. IEEE T Comput Aid 33(7):975-988. https://doi.org/10.1109/TCAD.2014.2313454 [9] Banerjee U, Wright A, Juvekar C, Waller M, Arvind CAP (2019) An energy-efficient reconfigurable DTLS cryptographic engine for securing internet-of-things applications. IEEE J Solid-St 54(8):2339-2352. https://doi.org/10.1109/JSSC.2019.2915203 [10] Liu D, Liu Z, Li L, Zou X (2016) A low-cost low-power ring oscillator-based truly random number generator for encryption on smart cards. IEEE T Circuits-II 63(6):608-612. https://doi.org/10.1109/TCSII.2016.2530800 [11] Ye W, Ma H, Shi H, Wang H, Lv A, Bian L et al (2021) Confining isolated chromophores for highly efficient blue phosphorescence. Nat Mater 20(11):1539-1544. https://doi.org/10.1038/s41563-021-01073-5 [12] Ji X, Shi B, Wang H, Xia D, Jie K, Wu ZL et al (2015) Supramolecular construction of multifluorescent gels: Interfacial assembly of discrete fluorescent gels through multiple hydrogen bonding. Adv Mater 27(48):8062-8066. https://doi.org/10.1002/adma.201504355 [13] Tian Y, Yang J, Liu Z, Gao M, Li X, Che W et al (2021) Multistage stimulus-responsive room temperature phosphorescence based on host-guest doping systems. Angew Chem Int Edit 60(37):20259-20263. https://doi.org/10.1002/anie.202107639 [14] Wei C, You C, Zhou L, Liu H, Zhou S, Wang X et al (2023) Antimicrobial hydrogel microneedle loading verteporfin promotes skin regeneration by blocking mechanotransduction signaling. Chem Eng J 472(15):144866. https://doi.org/10.1016/j.cej.2023.144866 [15] Lou K, Hu Z, Zhang H, Li Q, Ji X (2022) Information storage based on stimuli-responsive fluorescent 3D code materials. Adv Funct Mater 32(20):2113274. https://doi.org/10.1002/adfm.202113274 [16] Gao J, Tian M, He Y, Yi H, Guo J (2022) Multidimensional-encryption in emissive liquid crystal elastomers through synergistic usage of photorewritable fluorescent patterning and reconfigurable 3D shaping. Adv Funct Mater 32(4):2107145. https://doi.org/10.1002/adfm.202107145 [17] Li Y, Urbas A, Li Q (2012) Reversible light-directed red, green, and blue reflection with thermal stability enabled by a self-organized helical superstructure. J Am Chem Soc 134(23):9573-9576. https://doi.org/10.1021/ja302772z [18] Zhang Y, Le X, Jian Y, Lu W, Zhang J, Chen T (2019) 3D fluorescent hydrogel origami for multistage data security protection. Adv Funct Mater 29(46):1905514. https://doi.org/10.1002/adfm.201905514 [19] Banerjee W (2020) Challenges and applications of emerging nonvolatile memory devices. Electronics-Switz 9(6):1029. https://doi.org/10.3390/electronics9061029 [20] Si M, Cheng HY, Ando T, Hu G, Ye PD (2021) Overview and outlook of emerging non-volatile memories. MRS Bull 46(10):946-958. https://doi.org/10.1557/s43577-021-00204-2 [21] Chiu YC, Sun HS, Lee WY, Halila S, Borsali R, Chen WC (2015) Oligosaccharide carbohydrate dielectrics toward high-performance non-volatile transistor memory devices. Adv Mater 27(40):6257-6264. https://doi.org/10.1002/adma.201502088 [22] Hwang SK, Bae I, Kim RH, Park C (2012) Flexible non-volatile ferroelectric polymer memory with gate-controlled multilevel operation. Adv Mater 24(44):5910-5914. https://doi.org/10.1002/adma.201201831 [23] Xu Y, Xiao Y, Zhao Z, Müller F, Vardar A, Gong X et al (2023) Embedding security into ferroelectric FET array via in situ memory operation. Nat Commun 14(1):8287. https://doi.org/10.1038/s41467-023-43941-5 [24] Chen Z, Chen S, Jiang T, Chen S, Jia R, Xiao Y et al (2024) A floating-gate field-effect transistor memory device based on organic crystals with a built-in tunneling dielectric by a one-step growth strategy. Nanoscale 16(7):3721-3728. https://doi.org/10.1039/D3NR06278C [25] Wang W, Kim KL, Cho SM, Lee JH, Park C (2016) Nonvolatile transistor memory with self-assembled semiconducting polymer nanodomain floating gates. ACS Appl Mater Interfaces 8(49):33863-33873. https://doi.org/10.1021/acsami.6b12376 [26] Wu X, Lan S, Hu D, Chen Q, Li E, Yan Y et al (2019) High performance flexible multilevel optical memory based on a vertical organic field effect transistor with ultrashort channel length. J Mater Chem C 7(30):9229-9240. https://doi.org/10.1039/C9TC02385B [27] Yang H, Yan Y, Wu X, Liu Y, Chen Q, Zhang G et al (2020) A multilevel vertical photonic memory transistor based on organic semiconductor/inorganic perovskite quantum dot blends. J Mater Chem C 8(8):2861-2869. https://doi.org/10.1039/C9TC06622E [28] Qian C, Sun J, Kong L, Fu Y, Chen Y, Wang J et al (2017) Multilevel nonvolatile organic photomemory based on vanadyl-phthalocyanine/para-sexiphenyl heterojunctions. ACS Photonics 4(10):2573-2579. https://doi.org/10.1021/acsphotonics.7b00898 [29] Wang W, Jin J, Wang Y, Wei Z, Xu Y, Peng Z et al (2023) High-speed optoelectronic nonvolatile memory based on van der Waals heterostructures. Small 19(47):2304730. https://doi.org/10.1002/smll.202304730 [30] Huang W, Yin L, Wang F, Cheng R, Wang Z, Sendeku MG et al (2019) Multibit optoelectronic memory in top-floatinggated van der Waals heterostructures. Adv Funct Mater 29(36):1902890. https://doi.org/10.1002/adfm.201902890 [31] Wu X, Feng S, Shen J, Huang W, Li C, Li C et al (2020) Nonvolatile transistor memory based on a high-k dielectric polymer blend for multilevel data storage, encryption, and protection. Chem Mater 32(8):3641-3650. https://doi.org/10.1021/acs.chemmater.0c01271 [32] Hou P, Wang J, Zhong X, Zhang Y, Zhang X, Tan C et al (2016) Voltage pulse controlling multilevel data ferroelectric storage memory with a nonepitaxial ultrathin film. RSC Adv 6(83):80011-80016. https://doi.org/10.1039/C6RA14388A [33] Wang Z, Song Y, Zhang G, Luo Q, Xu K, Gao D et al (2024) Advances of embedded resistive random access memory in industrial manufacturing and its potential applications. Int J Extreme Manufact 6(3):032006.https://doi.org/10.1088/26317990/ad2fea [34] Wang H, Meng F, Zhu B, Leow WR, Liu Y, Chen X (2015) Resistive switching memory devices based on proteins. Adv Mater 27(46):7670-7676. https://doi.org/10.1002/adma.201405728 [35] Yang JM, Kim SG, Seo JY, Cuhadar C, Son DY, Lee D et al (2018) 1D hexagonal HC(NH2)2pbI3 for multilevel resistive switching nonvolatile memory. Adv Electron Mater 4(9):1800190. https://doi.org/10.1002/aelm.201800190 [36] Xu Z, Yuan Y, Song S, Song Z, Liu RF, Zhai JJASS (2023) Successive crystallization in indium selenide thin films for multi-level phase-change memory. Appl Surf Sci 633(1):157642. https://doi.org/10.1016/j.apsusc.2023.157642 [37] Wouters DJ, Waser R, Wuttig M (2015) Phase-change and redox-based resistive switching memories. P IEEE 103(8):1274-1288. https://doi.org/10.1109/JPROC.2015.2433311 [38] Kang M, Kim YA, Yun JM, Khim D, Kim J, Noh YY et al (2014) Stable charge storing in two-dimensional MoS2 nanoflake floating gates for multilevel organic flash memory. Nanoscale 6(21):12315-12323. https://doi.org/10.1039/C4NR03448A [39] Naber RCG, Tanase C, Blom PWM, Gelinck GH, Marsman AW, Touwslager FJ et al (2005) High-performance solution-processed polymer ferroelectric field-effect transistors. Nat Mater 4(3):243-248. https://doi.org/10.1038/nmat1329 [40] Aziz T, Sun Y, Wu ZH, Haider M, Qu TY, Khan A et al (2021) A flexible nickel phthalocyanine resistive random access memory with multi-level data storage capability. J Mater Sci Technol 86(30):151-157. https://doi.org/10.1016/j.jmst.2021.02.008 [41] Hu B, Zhu X, Chen X, Pan L, Peng S, Wu Y et al (2012) A multilevel memory based on proton-doped polyazomethine with an excellent uniformity in resistive switching. J Am Chem Soc 134(42):17408-17411. https://doi.org/10.1021/ja307933t [42] Yuan Y, Xu Z, Song S, Song Z, Liu RF, Zhai JJASS (2023) Crystallization behavior of MnTe/GeTe stacked thin films for multi-level phase change memory. Appl Surf Sci 640(15):158362. https://doi.org/10.1016/j.apsusc.2023.158362 [43] Khan MN, Ghosh S (2021) Comprehensive study of security and privacy of emerging non-volatile memories. J Low Power Electron Appl 11(4):36. https://doi.org/10.3390/jlpea11040036 [44] Mittal S, Alsalibi AI (2018) A survey of techniques for improving security of non-volatile memories. J Hardware Syst Secur 2(2):179-200. https://doi.org/10.1007/s41635-018-0034-5 [45] Ji D, Li T, Liu J, Amirjalayer S, Zhong M, Zhang ZY et al (2019) Band-like transport in small-molecule thin films toward high mobility and ultrahigh detectivity phototransistor arrays. Nat Commun 10(1):12. https://doi.org/10.1038/s41467-018-07943-y [46] Chow PCY, Matsuhisa N, Zalar P, Koizumi M, Yokota T, Someya T (2018) Dual-gate organic phototransistor with high-gain and linear photoresponse. Nat Commun 9(1):4546. https://doi.org/10.1038/s41467-018-06907-6 [47] Ren H, Chen JD, Li YQ, Tang JX (2021) Recent progress in organic photodetectors and their applications. Adv Sci 8(1):2002418. https://doi.org/10.1002/advs.202002418 [48] Zhang L, Zhong X, Pavlica E, Li S, Klekachev A, Bratina G et al (2016) A nanomesh scaffold for supramolecular nanowire optoelectronic devices. Nat Nanotechnol 11(10):900-906. https://doi.org/10.1038/nnano.2016.125 [49] Hao D, Liu D, Shen Y, Shi Q, Huang J (2021) Air-stable self-powered photodetectors based on lead-free CsBi3I10/SnO2 heterojunction for weak light detection. Adv Funct Mater 31(21):2100773. https://doi.org/10.1002/adfm.202100773 [50] Tao J, Liu D, Qin Z, Shao B, Jing J, Li H et al (2020) Organic UV-sensitive phototransistors based on distriphenylamineethynylpyrene derivatives with ultra-high detectivity approaching 1018. Adv Mater 32(12):1907791. https://doi.org/10.1002/adma.201907791 [51] Kim KH, Bae SY, Kim YS, Hur JA, Hoang MH, Lee TW et al (2011) Highly photosensitive J-aggregated single-crystalline organic transistors. Adv Mater 23(27):3095-3099. https://doi.org/10.1002/adma.201100944 [52] Zhu X, Yan Y, Sun L, Ren Y, Zhang Y, Liu Y et al (2022) Negative phototransistors with ultrahigh sensitivity and weak-light detection based on 1D/2D molecular crystal p-n heterojunctions and their application in light encoders. Adv Mater 34(23):2201364. https://doi.org/10.1002/adma.202201364 [53] Wu X, Shi S, Liang B, Dong Y, Yang R, Ji R et al. Ultralow-power optoelectronic synaptic transistors based on polyzwitterion dielectrics for in-sensor reservoir computing. Sci Adv 10(16):eadn4524. https://doi.org/10.1126/sciadv.adn4524 [54] Liang K, Wang R, Huo B, Ren H, Li D, Wang Y et al (2022) Fully printed optoelectronic synaptic transistors based on quantum dot-metal oxide semiconductor heterojunctions. ACS Nano 16(6):8651-8661. https://doi.org/10.1021/acsnano.2c00439 [55] Wang X, Hao D, Huang J (2022) Dye-sensitized perovskite/organic semiconductor ternary transistors for artificial synapses. Sci China Mater 65(9):2521-2528. https://doi.org/10.1007/s40843-021-1999-5 [56] Zhang J, Sun T, Zeng S, Hao D, Yang B, Dai S et al (2022) Tailoring neuroplasticity in flexible perovskite QDs-based optoelectronic synaptic transistors by dual modes modulation. Nano Energy 95:106987.https://doi.org/10.1016/j.nanoen.2022.106987 [57] Wu JY, Chun YT, Li S, Zhang T, Wang J, Shrestha PK et al (2018) Broadband MoS2 field-effect phototransistors: Ultrasensitive visible-light photoresponse and negative infrared photoresponse. Adv Mater 30(7):1705880. https://doi.org/10.1002/adma.201705880 [58] Yang Y, Peng X, Kim HS, Kim T, Jeon S, Kang HK et al (2015) Hot carrier trapping induced negative photoconductance in InAs nanowires toward novel nonvolatile memory. Nano Lett 15(9):5875-5882. https://doi.org/10.1021/acs.nanolett.5b01962 [59] Niu Y, Lin C, Liu X, Chen Y, Hu X, Zhang Y et al (2020) Optimizing the efficiency of a periodically poled LNOI waveguide using in situ monitoring of the ferroelectric domains. Appl Phys 116(10):101104. https://doi.org/10.1063/1.5142750 [60] Grillo A, Faella E, Pelella A, Giubileo F, Ansari L, Gity F et al (2021) Coexistence of negative and positive photoconductivity in few-layer PtSe2 field-effect transistors. Adv Funct Mater 31(43):2105722. https://doi.org/10.1002/adfm.202105722 [61] Tailor NK, Maity P, Saidaminov MI, Pradhan N, Satapathi S (2021) Dark self-healing-mediated negative photoconductivity of a lead-free Cs3Bi2Cl9 perovskite single crystal. J Phys Chem Lett 12(9):2286-2292. https://doi.org/10.1021/acs.jpclett.1c00057 [62] Peng M, Yu Y, Wang Z, Fu X, Gu Y, Wang Y et al (2022) Room-temperature blackbody-sensitive and fast infrared photodetectors based on 2D tellurium/graphene van der Waals heterojunction. ACS Photonics 9(5):1775-1782. https://doi.org/10.1021/acsphotonics.2c00246 [63] Cao A, Li S, Chen H, Deng M, Xu X, Shang L et al (2023) A polar-switchable and controllable negative phototransistor for information encryption. Mater Horiz 10(11):5099-5109. https://doi.org/10.1039/D3MH01120H [64] Choi JY, Yu HC, Lee J, Jeon J, Im J, Jang J et al (2018) Preparation of polyimide/graphene oxide nanocomposite and its application to nonvolatile resistive memory device. Polymers 10(8):901. https://doi.org/10.3390/polym10080901 [65] Mao H, Gu C, Yan S, Xin Q, Cheng S, Tan P et al (2020) Mxene quantum dot/polymer hybrid structures with tunable electrical conductance and resistive switching for nonvolatile memory devices. Adv Electron Mater 6(1):1900493. https://doi.org/10.1002/aelm.201900493 [66] Bera A, Peng H, Lourembam J, Shen Y, Sun XW, Wu T (2013) A versatile light-switchable nanorod memory: Wurtzite ZnO on perovskite SrTiO3. Adv Funct Mater 23(39):4977-4984. https://doi.org/10.1002/adfm.201300509 [67] Lin Y, Zhang X, Shan X, Zeng T, Zhao X, Wang Z et al (2020) Photo-tunable organic resistive random access memory based on PVP/N-doped carbon dot nanocomposites for encrypted image storage. J Mater Chem C 8(42):14789-14795. https://doi.org/10.1039/D0TC03907A [68] Yang CM, Chen TC, Verma D, Li LJ, Liu B, Chang WH et al (2020) Bidirectional all-optical synapses based on a 2D Bi2O2Se/graphene hybrid structure for multifunctional optoelectronics. Adv Funct Mater 30(30):2001598. https://doi.org/10.1002/adfm.202001598 [69] Zhang S, Hu A, Liu Q, Xu L, Ren X, Wang B et al (2023) Bipolar photoresponse in graphene/GaN heterostructure and its secure function in free-space optical communication. Adv Electron Mater 9(10):2300243. https://doi.org/10.1002/aelm.202300243 [70] Shi Q, Liu D, Dai S, Huang J (2021) A wavelength-tunable multi-functional transistor with visible-light detection and inverse photomemory for logic gate and retina emulation. Adv Opt Mater 9(20):2100654. https://doi.org/10.1002/adom.202100654 [71] Xu X, Deng W, Zhang X, Huang L, Wang W, Jia R et al. (2019) Dual-band, high-performance phototransistors from hybrid perovskite and organic crystal array for secure communication applications. ACS Nano 13(5):5910-5919. https://doi.org/10.1021/acsnano.9b01734 [72] Hu L, Shao J, Wang J, Cheng P, Zhang L, Chai Y et al (2024) In situ cryptography in a neuromorphic vision sensor based on light-driven memristors. Appl Phys Rev 11(1):011411. https://doi.org/10.1063/5.0185502 [73] Lu J, Ye Q, Ma C, Zheng Z, Yao J, Yang G (2022) Dielectric contrast tailoring for polarized photosensitivity toward multiplexing optical communications and dynamic encrypt technology. ACS Nano 16(8):12852-12865. https://doi.org/10.1021/acsnano.2c05114 [74] Wang Q, Bao J, Zhang Y, Wang Y, Qiu D, Yang J et al (2024) High-performance organic narrow dual-band circular polarized light detection for encrypted communications and color imaging. Adv Mater 36(16):2312396. https://doi.org/10.1002/adma.202312396 [75] Han H, Lee YJ, Kyhm J, Jeong JS, Han JH, Yang MK et al (2020) High-performance circularly polarized light-sensing near-infrared organic phototransistors for optoelectronic cryptographic primitives. Adv Funct Mater 30(52):2006236. https://doi.org/10.1002/adfm.202006236 [76] Hwang SK, Bae I, Cho SM, Kim RH, Jung HJ, Park C (2013) High performance multi-level non-volatile polymer memory with solution-blended ferroelectric polymer/high-k insulators for low voltage operation. Adv Funct Mater 23(44):5484-5493. https://doi.org/10.1002/adfm.201300372 [77] Kang SJ, Bae I, Park YJ, Park TH, Sung J, Yoon SC et al (2009) Non-volatile ferroelectric poly (vinylidene fluoride-co-trifluoroethylene) memory based on a single-crystalline tri-isopropylsilylethynyl pentacene field-effect transistor. Adv Funct Mater 19(10):1609-1616. https://doi.org/10.1002/adfm.200801097 [78] Hung CC, Wu HC, Chiu YC, Tung SH, Chen WC (2016) Crosslinkable high dielectric constant polymer dielectrics for low voltage organic field-effect transistor memory devices. J Polym Sci, Part A: Polym Chem 54(19):3224-3236. https://doi.org/10.1002/pola.28209 [79] Li Y, Song H, Jiang J (2023) Vertical ion-coupling Ga2O3 TFT with spatiotemporal logic encryption. IEEE Trans Electron Devices 70(6):3122-3125. https://doi.org/10.1109/TED.2023.3268145 [80] Pereda A E (2014) Electrical synapses and their functional interactions with chemical synapses. Nat Rev Neurosci 15(4):250-263. https://doi.org/10.1038/nrn3708 [81] Lee Y, Lee TW (2019) Organic synapses for neuromorphic electronics: From brain-inspired computing to sensorimotor nervetronics. Acc Chem Res 52(4):964-974. https://doi.org/10.1021/acs.accounts.8b00553 [82] Dong H, Zhu H, Meng Q, Gong X, Hu W (2012) Organic photoresponse materials and devices. Chem Soc Rev 41(5):1754-1808. https://doi.org/10.1039/C1CS15205J [83] Zhang Q, Li E, Wang Y, Gao C, Wang C, Li L et al (2023) Ultralow-power vertical transistors for multilevel decoding modes. Adv Mater 35(3):2208600. https://doi.org/10.1002/adma.202208600 [84] Gong F, Deng W, Wu Y, Liu F, Guo Y, Che Z et al (2024) Reconfigurable logic and in-sensor encryption operations in an asymmetrically tunable van der Waals heterostructure. Nano Res 17(4):3113-3119. https://doi.org/10.1007/s12274-023-6234-9 [85] Pan C, Wang CY, Liang SJ, Wang Y, Cao T, Wang P et al (2020) Reconfigurable logic and neuromorphic circuits based on electrically tunable two-dimensional homojunctions. Nat Electronics 3(7):383-390. https://doi.org/10.1038/s41928-020-0433-9 [86] Huang X, Ji D, Fuchs H, Hu W, Li T (2020) Recent progress in organic phototransistors: Semiconductor materials, device structures and optoelectronic applications. ChemPhotoChem 4(1):9-38. https://doi.org/10.1002/cptc.201900198 [87] Zhao Y, Liu L, Zhang F, Di C, Zhu D (2021) Advances in organic thermoelectric materials and devices for smart applications. SmartMat 2(4):426-445. https://doi.org/10.1002/smm2.1034 [88] Shen J, Liang B, Dong Y, Feng S, Huang W (2023) Electret molecular configuration induced programmable photonic memory for advanced logic operation and data encryption. Adv Funct Mater 33(28):2213341. https://doi.org/10.1002/adfm.202213341 [89] Dai Q, Pei M, Guo J, Wang Q, Hao Z, Wang H et al (2023) Integration of image preprocessing and recognition functions in an optoelectronic coupling organic ferroelectric retinomorphic neuristor. Mater Horiz 10(8):3061-3071. https://doi.org/10.1039/D3MH00429E [90] Zhao K, Liu J, Wang X, Che Q, Zhang B, He H et al (2024) 90% yield production of spiropyran covalently grafted mxene-based rram devices for optoelectronic dual-response switching. Adv Opt Mater 12(5):2301761. https://doi.org/10.1002/adom.202301761 [91] Shen J, Feng S, Ling Y, Chang CC, Huang C, Wu X et al (2021) Responsive zwitterionic polymers with humidity and voltage dual-switching for multilevel date encryption and anticounterfeiting. Chem Mater 33(4):1477-1488. https://doi.org/10.1021/acs.chemmater.1c00014 [92] Ye X, Zhu X, Yang H, Duan J, Gao S, Sun C et al. (2023) Selective dual-ion modulation in solid-state magnetoelectric heterojunctions for in-memory encryption. Small 19(16):2206824. https://doi.org/10.1002/smll.202206824 [93] Wu JW, Chao YC, Lin JY, Ho CC, Lai MC, Hsu FC et al (2024) A high-performance magnetoelectric non-volatile light-emitting memory device. J Mater Chem C 12(7):2450-2458. https://doi.org/10.1039/D3TC03857B [94] Tsai CL, Hsu FC, Lin JY, Chao YC, Chen YF (2022) An optically, electrically, magnetically controllable dual-gate phototransistor. Adv Electron Mater 8(9):2101378. https://doi.org/10.1002/aelm.202101378 [95] Han MJ, Kim M, Tsukruk VV (2023) Chiro-optoelectronic encodable multilevel thin film electronic elements with active bio-organic electrolyte layer. Small 19(18):2207921. https://doi.org/10.1002/smll.202207921 |