| [1] Boes A, Corcoran B, Chang L et al (2018) Status and potential of lithium niobate on insulator (lnoi) for photonic integrated circuits. Laser & Photonics Reviews 12(4):1700256. https://doi.org/10.1002/lpor.201700256 [2] Yuan S, Hu C, Pan A et al (2021) Photonic devices based on thin-film lithium niobate on insulator. J Semicond 42(4):041304. https://doi.org/10.1088/1674-4926/42/4/041304
 [3] Zhu D, Shao L, Yu M et al (2021) Integrated photonics on thin-film lithium niobate. Adv Opt Photon 13(2):242-352. https://doi.org/10.1364/AOP.411024
 [4] Guanyu C, Nanxi L, Da Jun N et al (2022) Advances in lithium niobate photonics: Development status and perspectives. Advanced Photonics 4(3):034003. https://doi.org/10.1117/1.AP.4.3.034003
 [5] Qi Y, Li Y (2020) Integrated lithium niobate photonics. Nanophotonics 9(6):1287-1320. https://doi.org/10.1515/nanoph-2020-0013
 [6] Jia Y, Wang L, Chen F (2021) Ion-cut lithium niobate on insulator technology: Recent advances and perspectives. Appl Phys Rev 8(1):011307. https://doi.org/10.1063/5.0037771
 [7] Wan Q, Wang L, Liu W et al (2001) Investigation of h+ and b+/h+ implantation in LiTaO3 single-crystals. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 184(4):531-535. https://doi.org/10.1016/S0168-583X(01)00827-8
 [8] Aspar B, Moriceau H, Jalaguier E et al (2001) The generic nature of the smart-cut® process for thin film transfer. J Electron Mater 30(7):834-840. https://doi.org/10.1007/s11664-001-0067-2
 [9] Wang C, Li Z, Kim M-H et al (2017) Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides. Nat Commun 8(1):2098. https://doi.org/10.1038/s41467-017-02189-6
 [10] Niu Y, Lin C, Liu X et al (2020) Optimizing the efficiency of a periodically poled lnoi waveguide using in situ monitoring of the ferroelectric domains. Appl Phys Lett 116(10):101104. https://doi.org/10.1063/1.5142750
 [11] Xue G-T, Niu Y-F, Liu X et al (2021) Ultrabright multiplexed energy-time-entangled photon generation from lithium niobate on insulator chip. Phys Rev Appl 15(6):064059. https://doi.org/10.1103/PhysRevApplied.15.064059
 [12] Zhao J, Ma C, Rüsing M et al (2020) High quality entangled photon pair generation in periodically poled thin-film lithium niobate waveguides. Phys Rev Lett 124(16):163603. https://doi.org/10.1103/PhysRevLett.124.163603
 [13] Wang C, Zhang M, Yu M et al (2019) Monolithic lithium niobate photonic circuits for kerr frequency comb generation and modulation. Nat Commun 10(1):978. https://doi.org/10.1038/s41467-019-08969-6
 [14] Desiatov B, Shams-Ansari A, Zhang M et al (2019) Ultra-low-loss integrated visible photonics using thin-film lithium niobate. Optica 6(3):380-384. https://doi.org/10.1364/OPTICA.6.000380
 [15] Wang C, Zhang M, Chen X et al (2018) Integrated lithium niobate electro-optic modulators operating at cmos-compatible voltages. Nature 562(7725):101-104. https://doi.org/10.1038/s41586-018-0551-y
 [16] Wang T-J, Chu C-H, Lin C-Y (2007) Electro-optically tunable microring resonators on lithium niobate. Opt Lett 32(19):2777-2779. https://doi.org/10.1364/OL.32.002777
 [17] Sakashita Y, Segawa H (1995) Preparation and characterization of linbo3 thin films produced by chemical-vapor deposition. J Appl Phys 77(11):5995-5999. https://doi.org/10.1063/1.359183
 [18] Lansiaux X, Dogheche E, Remiens D et al (2001) LiNbO3 thick films grown on sapphire by using a multistep sputtering process. J Appl Phys 90(10):5274-5277. https://doi.org/10.1063/1.1378332
 [19] Nakata Y, Gunji S, Okada T et al (2004) Fabrication of LiNbO3 thin films by pulsed laser deposition and investigation of nonlinear properties. Appl Phys A 79(4):1279-1282. https://doi.org/10.1007/s00339-004-2748-1
 [20] Yoon JG, Kim K (1996) Growth of highly textured LiNbO3 thin film on si with mgo buffer layer through the sol-gel process. Appl Phys Lett 68(18):2523-2525. https://doi.org/10.1063/1.115842
 [21] Gitmans F, Sitar Z, Günter P (1995) Growth of tantalum oxide and lithium tantalate thin films by molecular beam epitaxy. Vacuum. 46(8):939-942. https://doi.org/10.1016/0042-207X(95)00077-1
 [22] Levy M, Osgood RM Jr, Liu R et al (1998) Fabrication of single-crystal lithium niobate films by crystal ion slicing. Appl Phys Lett 73(16):2293-2295. https://doi.org/10.1063/1.121801
 [23] Hui, H., Li, G., Raimund, R., et al. Towards nonlinear photonic wires in lithium niobate. ProcSPIE. 7604(76040R (2010). https://doi.org/10.1117/12.842674
 [24] Poberaj G, Hu H, Sohler W et al (2012) Lithium niobate on insulator (lnoi) for micro-photonic devices. Laser & Photonics Reviews. 6(4):488-503. https://doi.org/10.1002/lpor.201100035
 [25] Guarino A, Poberaj G, Rezzonico D et al (2007) Electro-optically tunable microring resonators in lithium niobate. Nat Photonics 1(7):407-410. https://doi.org/10.1038/nphoton.2007.93
 [26] Chen G, Cheung EJH, Cao Y et al (2021) Analysis of perovskite oxide etching using argon inductively coupled plasmas for photonics applications. Nanoscale Res Lett 16(1):32. https://doi.org/10.1186/s11671-021-03494-2
 [27] Li Z, Wang RN, Lihachev G et al (2023) High density lithium niobate photonic integrated circuits. Nat Commun 14(1):4856. https://doi.org/10.1038/s41467-023-40502-8
 [28] Gong S, Piazza G (2013) Design and analysis of lithium-niobate-based high electromechanical coupling rf-mems resonators for wideband filtering. IEEE Trans Microw Theory Tech 61(1):403-414. https://doi.org/10.1109/TMTT.2012.2228671
 [29] Gong S, Piazza G (2013) Figure-of-merit enhancement for laterally vibrating lithium niobate mems resonators. IEEE Trans Electron Devices 60(11):3888-3894. https://doi.org/10.1109/TED.2013.2281734
 [30] Zhuang R, He J, Qi Y et al (2023) High-Q thin-film lithium niobate microrings fabricated with wet etching. Advanced Materials. 35(3):2208113. https://doi.org/10.1002/adma.202208113
 [31] Dawar AL, Al-Shukri SM, De La Rue RM et al (1986) Fabrication and characterization of titanium-indiffused proton-exchanged optical waveguides in y-LiNbO3. Appl Opt 25(9):1495-1498. https://doi.org/10.1364/AO.25.001495
 [32] Krasnokutska I, Tambasco J-LJ, Li X et al (2018) Ultra-low loss photonic circuits in lithium niobate on insulator. Opt Express 26(2):897-904. https://doi.org/10.1364/OE.26.000897
 [33] Wolf R, Breunig I, Zappe H et al (2018) Scattering-loss reduction of ridge waveguides by sidewall polishing. Opt Express 26(16):19815-19820. https://doi.org/10.1364/OE.26.019815
 [34] Zhang M, Wang C, Cheng R et al (2017) Monolithic ultra-high-Q lithium niobate microring resonator. Optica 4(12):1536-1537. https://doi.org/10.1364/OPTICA.4.001536
 [35] Wu R, Wang M, Xu J et al. Long low-loss-litium niobate on insulator waveguides with sub-nanometer surface roughness. Nanomaterials 8(11), (2018). https://doi.org/10.3390/nano8110910
 [36] Lu Y, Johnston B, Dekker P et al. Channel waveguides in lithium niobate and lithium tantalate. Molecules 25(17), (2020). https://doi.org/10.3390/molecules25173925
 [37] Nishi H, Tsuchizawa T, Segawa T et al. Low-loss lithium tantalate on insulator waveguide towards on-chip nonlinear photonics. 2022 27th OptoElectronics and Communications Conference (OECC) and 2022 International Conference on Photonics in Switching and Computing (PSC). 1-3 (2022). https://doi.org/10.23919/OECC/PSC53152.2022.9850122
 [38] Jin T, Zhou J, Lin PT (2019) Mid-infrared electro-optical modulation using monolithically integrated titanium dioxide on lithium niobate optical waveguides. Sci Rep 9(1):15130. https://doi.org/10.1038/s41598-019-51563-5
 [39] Wang C, Burek MJ, Lin Z et al (2014) Integrated high quality factor lithium niobate microdisk resonators. Opt Express 22(25):30924-30933. https://doi.org/10.1364/OE.22.030924
 [40] Liang H, Luo R, He Y et al (2017) High-quality lithium niobate photonic crystal nanocavities. Optica 4(10):1251-1258. https://doi.org/10.1364/OPTICA.4.001251
 [41] Wang Y, Chen Z, Cai L et al (2017) Amorphous silicon-lithium niobate thin film strip-loaded waveguides. Opt Mater Express 7(11):4018-4028. https://doi.org/10.1364/OME.7.004018
 [42] Ahmed ANR, Shi S, Zablocki M et al (2019) Tunable hybrid silicon nitride and thin-film lithium niobate electro-optic microresonator. Opt Lett 44(3):618-621. https://doi.org/10.1364/OL.44.000618
 [43] Jiang X-F, Zou C-L, Wang L et al (2016) Whispering-gallery microcavities with unidirectional laser emission. Laser & Photonics Reviews. 10(1):40-61. https://doi.org/10.1002/lpor.201500163
 [44] Lin J, Xu Y, Fang Z et al (2015) Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining. Sci Rep 5(1):8072. https://doi.org/10.1038/srep08072
 [45] Wu R, Zhang J, Yao N et al (2018) Lithium niobate micro-disk resonators of quality factors above 107. Opt Lett 43(17):4116-4119. https://doi.org/10.1364/OL.43.004116
 [46] Wang, R., Bhave, S. A. Lithium niobate optomechanical disk resonators. 2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF). 1-4 (2020). https://doi.org/10.1109/IFCS-ISAF41089.2020.9264025
 [47] Yan X, Liu Y, Ge L et al (2020) High optical damage threshold on-chip lithium tantalate microdisk resonator. Opt Lett 45(15):4100-4103. https://doi.org/10.1364/OL.394171
 [48] Xu Q, Schmidt B, Pradhan S et al (2005) Micrometre-scale silicon electro-optic modulator. Nature 435(7040):325-327. https://doi.org/10.1038/nature03569
 [49] Sinatkas G, Christopoulos T, Tsilipakos O et al (2021) Electro-optic modulation in integrated photonics. J Appl Phys 130(1):010901. https://doi.org/10.1063/5.0048712
 [50] Wright LJ, Karpiński M, Söller C et al (2017) Spectral shearing of quantum light pulses by electro-optic phase modulation. Phys Rev Lett 118(2):023601. https://doi.org/10.1103/PhysRevLett.118.023601
 [51] Ren T, Zhang M, Wang C et al (2019) An integrated low-voltage broadband lithium niobate phase modulator. IEEE Photonics Technol Lett 31(11):889-892. https://doi.org/10.1109/LPT.2019.2911876
 [52] Xu M, He M, Zhang H et al (2020) High-performance coherent optical modulators based on thin-film lithium niobate platform. Nat Commun 11(1):3911. https://doi.org/10.1038/s41467-020-17806-0
 [53] Xu M, Zhu Y, Pittalà F et al (2022) Dual-polarization thin-film lithium niobate in-phase quadrature modulators for terabit-per-second transmission. Optica 9(1):61-62. https://doi.org/10.1364/OPTICA.449691
 [54] Xu M, Chen W, He M et al (2019) Michelson interferometer modulator based on hybrid silicon and lithium niobate platform. APL Photonics 4(10):100802. https://doi.org/10.1063/1.5115136
 [55] Liu Y, Liu J, Wang Y et al (2019) A novel structure to suppress transverse modes in radio frequency tc-saw resonators and filters. IEEE Microwave Wirel Compon Lett 29(4):249-251. https://doi.org/10.1109/LMWC.2019.2898730
 [56] Kimura T, Omura M, Kishimoto Y et al. A high velocity and wideband saw on a thin LiNbO3 plate bonded on a si substrate in the shf range. 2019 IEEE International Ultrasonics Symposium (IUS). 1239-1248 (2019). https://doi.org/10.1109/ULTSYM.2019.8926065
 [57] Takai T, Iwamoto H, Takamine Y et al. I.H.P. Saw technology and its application to microacoustic components (invited). 2017 IEEE International Ultrasonics Symposium (IUS). 1-8 (2017). https://doi.org/10.1109/ULTSYM.2017.8091876
 [58] Song YH, Gong S (2015) Elimination of spurious modes in sh0 lithium niobate laterally vibrating resonators. IEEE Electron Device Lett 36(11):1198-1201. https://doi.org/10.1109/LED.2015.2478378
 [59] Turner PJ, Garcia B, Yantchev V et al (2019) 5 GHz band n79 wideband microacoustic filter using thin lithium niobate membrane. Electronics Letters. 55(17):942-944. https://doi.org/10.1049/el.2019.1658
 [60] Kimura T, Omura M, Kishimoto Y et al (2019) Comparative study of acoustic wave devices using thin piezoelectric plates in the 3-5-GHz range. IEEE Trans Microw Theory Tech 67(3):915-921. https://doi.org/10.1109/TMTT.2018.2890661
 [61] Yang Y, Lu R, Gong S (2020) High Q antisymmetric mode lithium niobate mems resonators with spurious mitigation. J Microelectromech Syst 29(2):135-143. https://doi.org/10.1109/JMEMS.2020.2967784
 [62] Yan Y, Huang K, Zhou H et al (2019) Wafer-scale fabrication of 42° rotated y-cut LiTaO3-on-insulator (ltoi) substrate for a saw resonator. ACS Appl Electron Mater 1(8):1660-1666. https://doi.org/10.1021/acsaelm.9b00351
 [63] Wu J, Zhang S, Chen Y et al (2022) Advanced surface acoustic wave resonators on LiTaO3/SiO2/sapphire substrate. IEEE Electron Device Lett 43(10):1748-1751. https://doi.org/10.1109/LED.2022.3200418
 [64] Assila N, Kadota M, Tanaka S (2019) High-frequency resonator using a1 lamb wave mode in LiTaO3 plate. IEEE Trans Ultrason Ferroelectr Freq Control 66(9):1529-1535. https://doi.org/10.1109/TUFFC.2019.2923579
 [65] Kadota M, Ogami T, Yamamoto K et al (2009) High-frequency lamb wave device composed of LiNbO3 thin film. Japanese Journal of Applied Physics 48(7S):07GG08. https://doi.org/10.1143/JJAP.48.07GG08
 [66] Yang Y, Lu R, Gao L et al (2019) 4.5 GHz lithium niobate mems filters with 10% fractional bandwidth for 5G front-ends. Journal of Microelectromechanical Systems 28(4):575-577. https://doi.org/10.1109/JMEMS.2019.2922935
 [67] Plessky V, Yandrapalli S, Turner PJ et al (2019) 5 GHz laterally-excited bulk-wave resonators (xbars) based on thin platelets of lithium niobate. Electronics Letters. 55(2):98-100. https://doi.org/10.1049/el.2018.7297
 [68] Jin H, Liu FM, Xu P et al (2014) On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits. Phys Rev Lett 113(10):103601. https://doi.org/10.1103/PhysRevLett.113.103601
 [69] Cheng X, Sarihan MC, Chang K-C et al (2019) Design of spontaneous parametric down-conversion in integrated hybrid sixny-ppln waveguides. Opt Express 27(21):30773-30787. https://doi.org/10.1364/OE.27.030773
 [70] Sayem AA, Cheng R, Wang S et al (2020) Lithium-niobate-on-insulator waveguide-integrated superconducting nanowire single-photon detectors. Appl Phys Lett 116(15):151102. https://doi.org/10.1063/1.5142852
 [71] Dutta S, Zhao Y, Saha U et al (2023) An atomic frequency comb memory in rare-earth-doped thin-film lithium niobate. ACS Photonics 10(4):1104-1109. https://doi.org/10.1021/acsphotonics.2c01835
 [72] Zhang M, Buscaino B, Wang C et al (2019) Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature 568(7752):373-377. https://doi.org/10.1038/s41586-019-1008-7
 [73] Ma Z, Chen J-Y, Li Z et al (2020) Ultrabright quantum photon sources on chip. Phys Rev Lett 125(26):263602. https://doi.org/10.1103/PhysRevLett.125.263602
 [74] Snigirev V, Riedhauser A, Lihachev G et al (2023) Ultrafast tunable lasers using lithium niobate integrated photonics. Nature 615(7952):411-417. https://doi.org/10.1038/s41586-023-05724-2
 |