
Moore and More ›› 2025, Vol. 1 ›› Issue (4): 370-394.DOI: 10.1007/s44275-024-00022-z
Kangkai Fan1, Jiachang Guo1, Zihao Huang1, Yu Xu1, Zengli Huang2, Wei Xu3, Qi Wang4, Qiubao Lin5, Xiaohua Li1, Hezhou Liu1, Xinke Liu1
收稿日期:2024-10-11
修回日期:2024-12-04
接受日期:2024-12-22
出版日期:2025-11-29
发布日期:2025-03-26
通讯作者:
Xinke Liu,E-mail:xkliu@szu.edu.cn
基金资助:Kangkai Fan1, Jiachang Guo1, Zihao Huang1, Yu Xu1, Zengli Huang2, Wei Xu3, Qi Wang4, Qiubao Lin5, Xiaohua Li1, Hezhou Liu1, Xinke Liu1
Received:2024-10-11
Revised:2024-12-04
Accepted:2024-12-22
Online:2025-11-29
Published:2025-03-26
Contact:
Xinke Liu,E-mail:xkliu@szu.edu.cn
Supported by:摘要: Gallium nitride (GaN)-based power devices have attracted significant attention due to their superior performance in high-frequency and high-power applications. However, the high-power density in these devices often induces severe self-heating effects (SHEs), which degrade their performance and reliability. Traditional thermal management solutions have struggled to efficiently dissipate heat, thereby leading to suboptimal real-world performance compared with theoretical predictions. To address this challenge, diamond has emerged as a highly promising substrate material for GaN devices, primarily due to its exceptional thermal conductivity and mechanical stability. GaN-on-diamond technology has a thermal conductivity of 2 200 W/m/K and it significantly enhances heat dissipation at the chip level. In this review, we provide a systematic overview of the two main integration methods for GaN and diamond: bonding and epitaxial growth techniques. Moreover, we elaborate on the impact of thermal boundary resistance (TBR) at the interface. According to the diffuse mismatch model, the TBR of GaN-on-diamond interfaces can be as low as 3 m2K/GW, which is markedly superior to silicon carbide substrates. In addition, novel techniques such as patterned growth, nanocrystalline diamond (NCD) capping films, and diamond passivation layers have been explored to further enhance thermal management capabilities. We also consider the roles of intermediate dielectric layers in reducing TBR, promoting diamond nucleation, and protecting the GaN layer. Thus, in this review, we summarize the current state of research into GaN-on-diamond technology, highlighting its revolutionary impact on thermal management for power devices and providing new pathways for the development of high-power GaN devices in the future.
Kangkai Fan, Jiachang Guo, Zihao Huang, Yu Xu, Zengli Huang, Wei Xu, Qi Wang, Qiubao Lin, Xiaohua Li, Hezhou Liu, Xinke Liu. GaN-on-diamond technology for next-generation power devices[J]. Moore and More, 2025, 1(4): 370-394.
Kangkai Fan, Jiachang Guo, Zihao Huang, Yu Xu, Zengli Huang, Wei Xu, Qi Wang, Qiubao Lin, Xiaohua Li, Hezhou Liu, Xinke Liu. GaN-on-diamond technology for next-generation power devices[J]. Moore and More, 2025, 1(4): 370-394.
| [1] Bader S J, Lee H, Chaudhuri R, Huang S, Hickman A, Molnar A et al (2020) Prospects for wide bandgap and ultrawide bandgap CMOS devices. IEEE Trans. Electron Devices 67(10): 4010-4020. https://doi.org/10.1109/TED.2020.3010471 [2] Ueda T (2019) GaN power devices: current status and future challenges. Jpn. J. Appl. Phys. 58(SC): SC0804. https://doi.org/10.7567/1347-4065/ab12c9 [3] Xu R, Chen P, Liu M, Zhou J, Yang Y, Li Y et al (2020) 1.4-kV quasi-vertical GaN Schottky barrier diode with reversep-n junction termination. IEEE J. Electron Devices Soc. 8: 316-320. https://doi.org/10.1109/JEDS.2020.2980759 [4] Wang X, Hu G, Ma Z, Ran J, Wang C, Xiao H et al (2007) AlGaN/AlN/GaN/SiC HEMT structure with high mobility GaN thin layer as channel grown by MOCVD. J. Cryst. Growth 298: 835-839. https://doi.org/10.1016/j.jcrysgro.2006.10.219 [5] Jessen G H, Gillespie J K, Via G D, Crespo A, Langley D, Wasserbauer J et al (2006) AlGaN/GaN HEMT on diamond technology demonstration. 2006 IEEE Compound Semiconductor Integrated Circuit Symposium, San Antonio, TX, USA, 2006, pp. 271-274. https://doi.org/10.1109/CSICS.2006.319952 [6] Meneghini M, Santi C D, Abid I, Buffolo M, Cioni M, Khadar R A et al (2021) GaN-based power devices: Physics, reliability, and perspectives. J. Appl. Phys 0 14 November 2021; 130 (18): 181101. https://doi.org/10.1063/5.0061354 [7] Sano H, Ui N, Sano S (2007) A 40W GaN HEMT Doherty power amplifier with 48% efficiency for WiMAX applications. 2007 IEEE Compound Semiconductor Integrated Circuits Symposium, Portland, OR, USA, pp. 1-4. https://doi.org/10.1109/CSICS07.2007.15 [8] Tang Y, Shinohara K, Regan D, Corrion A, Brown D, Wong J et al (2015) Ultrahigh-speed GaN high-electron-mobility transistors with fT/fmax of 454/444 GHz. IEEE Electron Device Lett. 36(6): 549-551. https://doi.org/10.1109/LED.2015.2421311 [9] Chen S, Reese E, Nguyen T (2012) A compact 70 Watt power amplifier MMIC utilizing S-band GaN on SiC HEMT Process. 2012 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), La Jolla, CA, USA, pp. 1-4. https://doi.org/10.1109/CSICS.2012.6340070 [10] Dumka D C, Chou T M, Jimenez J L, Fanning D M, Francis D, Faili F et al (2013) Electrical and thermal performance of AlGaN/GaN HEMTs on diamond substrate for RF applications. 2013 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), Monterey, CA, USA, pp. 1-4. https://doi.org/10.1109/CSICS.2013.6659225 [11] Zhou Y, Anaya J, Pomeroy J, Sun H, Gu X, Xie A et al (2017) Barrier-layer optimization for enhanced GaN-on-diamond device cooling. ACS Appl. Mater. Interfaces 9(39): 34416-34422. https://doi.org/10.1021/acsami.7b08961 [12] Pop E, Sinha S, Goodson K E (2006) Heat generation and transport in nanometer-scale transistors. Proc. IEEE 94(8): 1587-1601. https://doi.org/10.1109/JPROC.2006.879794 [13] Bar-Cohen A, Maurer J J, Altman D H (2019) Embedded cooling for wide bandgap power amplifiers: a review. J. Electron. Packag. 141(4): 040803. https://doi.org/10.1115/1.4043404 [14] Meneghesso G, Verzellesi G, Danesin F, Rampazzo F, Zanon F, Tazzoli A et al (2008) Reliability of GaN high-electron-mobility transistors: state of the art and perspectives. IEEE Trans. Device Mater. Reliab. 8(2): 332-343. https://doi.org/10.1109/TDMR.2008.923743 [15] Zheng X, Wang A, Hou X, Wang Y, Wen H, Wang C et al (2017) Influence of the diamond layer on the electrical characteristics of AlGaN/GaN high-electron-mobility transistors. Chin. Phys. Lett. 34(2): 27301. https://doi.org/10.1088/0256-307X/34/2/027301 [16] Guo H, Kong Y, Chen T (2017) Thermal simulation of high power GaN-on-diamond substrates for HEMT applications. Diam. Relat. Mat. 73: 260-266. https://doi.org/10.1016/j.diamond.2016.10.006 [17] Du S, Guo H, Xie Z, Zhang J, Huang S, Wu N et al (2023) Unveiling thermal properties and pump-out blocking in diamond/GaInSn composites as thermal interface materials. Rare Metals 42(12): 3969-3976. https://doi.org/10.1007/s12598-023-02331-y [18] Song C, Kim J, Lee H, Cho J (2019) Fundamental limits for near-junction conduction cooling of high power GaN-on-diamond devices. Solid State Commun. 295: 12-15. https://doi.org/10.1016/j.ssc.2019.03.013 [19] Chen G, Koizumi S, Koide Y, Liao M (2024) Low-energy dissipation diamond MEMS. Accounts Mater. Res. 5(9): 1087-1096. https://doi.org/10.1021/accountsmr.4c00139 [20] Anderson T J, Hobart K D, Tadjer M J, Koehler A D, Imhoff E A, Hite J K et al (2017) Nanocrystalline diamond integration with III-Nitride HEMTs. ECS J. Solid State Sci. Technol. 6(2): Q3036-Q3039. https://doi.org/10.1149/2.0071702jss [21] Nazari M, Hancock B L, Anderson J, Savage A, Piner E L, Graham S et al (2016) Near-ultraviolet micro-Raman study of diamond grown on GaN. Appl. Phys. Lett. 108(3): 031901. https://doi.org/10.1063/1.4940200 [22] Zhou Y, Ramaneti R, Anaya J, Korneychuk S, Derluyn J, Sun H et al (2017) Thermal characterization of polycrystalline diamond thin film heat spreaders grown on GaN HEMTs. Appl. Phys. Lett. 111(4): 041901. https://doi.org/10.1063/1.4995407 [23] Kagawa R, Cheng Z, Kawamura K, Ohno Y, Moriyama C, Sakaida Y et al (2024) High thermal stability and low thermal resistance of large area GaN/3C‐SiC/diamond junctions for practical device processes. Small 20: 2305574. https://doi.org/10.1002/smll.202305574 [24] Kagawa R, Kawamura K, Sakaida Y, Ouchi S, Uratani H, Shimizu Y et al (2022) AlGaN/GaN/3C-SiC on diamond HEMTs with thick nitride layers prepared by bonding-first process. Appl. Phys. Express 15(4): 41003. https://doi.org/10.35848/1882-0786/ac5ba7 [25] Sun H, Simon R B, Pomeroy J W, Francis D, Faili F, Twitchen D J et al (2015) Reducing GaN-on-diamond interfacial thermal resistance for high power transistor applications. Appl. Phys. Lett. 106(11): 111906. https://doi.org/10.1063/1.4913430 [26] Haziq M, Falina S, Manaf A A, Kawarada H, Syamsul M (2022) Challenges and opportunities for high-power and high-frequency AlGaN/GaN high-electron-mobility transistor (HEMT) applications: a review. Micromachines 13(12): 2133. https://doi.org/10.3390/mi13122133 [27] Zuo Z, Tang N, Chen H (2022) Analysis and improvement of self-heating effect based on GaN HEMT devices. Mater. Res. Express 9(7): 75903. https://doi.org./https://doi.org/10.1088/2053-1591/ac82a8 [28] Zhan T, Xu M, Cao Z, Zheng C, Kurita H, Narita F et al (2023) Effects of thermal boundary resistance on thermal management of gallium-nitride-based semiconductor devices: a review. Micromachines 14(11): 2076. https://doi.org/10.3390/mi14112076 [29] Qu Y, Deng N, Yuan Y, Hu W, Liu H, Wu S et al (2022) Electrical and thermal characteristics of AlGaN/GaN HEMT devices with dual metal gate structure: a theoretical investigation. Materials 15(11): 3818. https://doi.org/10.3390/ma15113818 [30] D M K. Characterization of the thermal properties of chemical vapordeposition grown diamond films for electronics cooling. Georgia Institute of Technology, 2016. [31] Pomeroy J, Bernardoni M, Sarua A, Manoi A, Dumka D C, Fanning D M et al (2013) Achieving the best thermal performance for GaN-on-diamond. 2013 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), Monterey, CA, USA, pp. 1-4. https://doi.org/10.1109/CSICS.2013.6659210 [32] Hodges C, Pomeroy J, Kuball M (2014) Probing temperature gradients within the GaN buffer layer of AlGaN/GaN high electron mobility transistors with Raman thermography. J. Appl. Phys. 115(6): 064504. https://doi.org/10.1063/1.4865296 [33] Kuzmik J, Javorka R, Alam A, Marso M, Heuken M, Kordos P (2002) Determination of channel temperature in AlGaN/GaN HEMTs grown on sapphire and silicon substrates using DC characterization method. IEEE Trans. Electron Devices 49(8): 1496-1498. https://doi.org/10.1109/TED.2002.801430 [34] Narihiko Maeda K T T S (2001) High-temperature electron transport properties in AlGaN/GaN heterostructures. Appl. Phys. Lett. (79): 1634-1636. https://doi.org/10.1063/1.1400779 [35] Dewey W C (2009) Arrhenius relationships from the molecule and cell to the clinic. Int. J. Hyperthermia. 25(1): 3-20. https://doi.org/10.1080/02656730902747919 [36] Teraji T (2006) Chemical vapor deposition of homoepitaxial diamond films. phys. stat. sol. (a) 203(13): 3324-3357. https://doi.org/10.1002/pssa.200671408 [37] Hirama K, Taniyasu Y, Kasu M (2011) AlGaN/GaN high-electron mobility transistors with low thermal resistance grown on single-crystal diamond (111) substrates by metalorganic vapor-phase epitaxy. Appl. Phys. Lett. 98(16): 162112. https://doi.org/10.1063/1.3574531 [38] Martin-Horcajo S, Wang A, Romero M, Tadjer M J, Calle F (2013) Simple and accurate method to estimate channel temperature and thermal resistance in AlGaN/GaN HEMTs. IEEE Trans. Electron Devices 60(12): 4105-4111. https://doi.org/10.1109/TED.2013.2284851 [39] Tadjer M J, Anderson T J, Ancona M G, Raad P E, Komarov P, Bai T et al (2019) GaN-On-diamond HEMT technology with TAVG = 176℃ at PDC,max = 56 W/mm measured by transient thermoreflectance imaging. IEEE Electron Device Lett. 40(6): 881-884. https://doi.org/10.1109/LED.2019.2909289 [40] Pomeroy J W, Bernardoni M, Dumka D C, Fanning D M, Kuball M (2014) Low thermal resistance GaN-on-diamond transistors characterized by three-dimensional Raman thermography mapping. Appl. Phys. Lett. 104(8): 83513. https://doi.org/10.1063/1.4865583 [41] Kuball M, Hayes J M, Uren M J, Martin I, Birbeck J C H, Balmer R S et al (2002) Measurement of temperature in active high-power AlGaN/GaN HFETs using Raman spectroscopy. IEEE Electron Device Lett. 23(1): 7-9. https://doi.org/10.1109/55.974795 [42] Felbinger J G, Chandra M V S, Sun Y, Eastman L F, Wasserbauer J, Faili F et al (2007) Comparison of GaN HEMTs on diamond and SiC substrates. IEEE Electron Device Lett. 28(11): 948-950. https://doi.org/10.1109/LED.2007.908490 [43] Lee W S, Lee K W, Lee S H, Cho K, Cho S (2019) A GaN/diamond HEMTs with 23 W/mm for next generation high power RF application. 2019 IEEE MTT-S International Microwave Symposium (IMS), Boston, MA, USA, pp. 1395-1398. https://doi.org/10.1109/MWSYM.2019.8700882 [44] Yang L, Sun L, Bai W, Li L (2019) Thermal conductivity of Cu-Ti/diamond composites via spark plasma sintering. Diam. Relat. Mat. 94: 37-42. https://doi.org/10.1016/j.diamond.2019.02.014 [45] Tully J J, Braxton E, Cobb S J, Breeze B G, Markham M, Newton M E et al (2021) Diamond membrane production: the critical role of radicals in the non-contact electrochemical etching of sp2 carbon. Carbon 185: 717-726. https://doi.org/10.1016/j.carbon.2021.09.054 [46] Nigam A, Bhat T N, Rajamani S, Dolmanan S B, Tripathy S, Kumar M (2017) Effect of self-heating on electrical characteristics of AlGaN/ GaN HEMT on Si (111) substrate. AIP Adv. 7(8): 085015. https://doi.org/10.1063/1.4990868 [47] Garcia V G, Farzaneh M (2016) Transient thermal imaging of a vertical cavity surface-emitting laser using thermoreflectance microscopy. J. Appl. Phys. 119(4): 045105. https://doi.org/10.1063/1.4940710 [48] Sarua A, Ji H, Hilton K P, Wallis D J, Uren M J, Martin T et al (2007) Thermal boundary resistance between GaN and substrate in AlGaN/GaN electronic devices. IEEE Trans. Electron Devices 54(12): 3152-3158. https://doi.org/10.1109/TED.2007.908874 [49] Cho J, Bozorg-Grayeli E, Altman D H, Asheghi M, Goodson K E (2012) Low thermal resistances at GaN-SiC interfaces for HEMT technology. IEEE Electron Device Lett. 33(3): 378-380. https://doi.org/10.1109/LED.2011.2181481 [50] Li Y H, Qi R S, Shi R C, Hu J N, Liu Z T, Sun Y W et al (2022) Atomic-scale probing of heterointerface phonon bridges in nitride semiconductor. Proc. Natl. Acad. Sci. U. S. A. 119(8): e2117027119. https://doi.org/10.1073/pnas.2117027119 [51] Chen J, Xu X, Zhou J, Li B (2022) Interfacial thermal resistance: past, present, and future. Rev. Mod. Phys. 94(2): 1. https://doi.org/10.1103/RevModPhys.94.025002 [52] Alosious S, Kannam S K, Sathian S P, Todd B D (2019) Prediction of Kapitza resistance at fluid-solid interfaces. The Journal of Chemical Physics 151(19): 194502-194502. https://doi.org/10.1063/1.5126887 [53] Won Y, Cho J, Agonafer D, Asheghi M, Goodson K E (2015) Fundamental cooling limits for high power density gallium nitride electronics. IEEE Transactions on Components, Packaging, and Manufacturing Technology (2011) 5(6): 737-744. https://doi.org./https://doi.org/10.1109/TCPMT.2015.2433132 [54] Jani O, Yu H, Trybus E, Jampana B, Ferguson I, Doolittle A et al (2007) Effect of phase separation on performance of III-V nitride solar cells. 22nd European Photovoltaic Solar Energy Conference, 3-7 September 2007, Milan, Italy, pp. 64-67. [55] Yates L, Anderson J, Gu X, Lee C, Bai T, Mecklenburg M et al (2018) Low thermal boundary resistance interfaces for GaN-on-diamond devices. ACS Appl. Mater. Interfaces 10(28): 24302-24309. https://doi.org/10.1021/acsami.8b07014 [56] Anaya J, Rossi S, Alomari M, Kohn E, Tóth L, Pécz B et al (2016) Control of the in-plane thermal conductivity of ultra-thin nanocrystalline diamond films through the grain and grain boundary properties. Acta Mater. 103: 141-152. https://doi.org/10.1016/j.actamat.2015.09.045 [57] Wang Q, Wang X, Liu X, Zhang J (2021) Interfacial engineering for the enhancement of interfacial thermal conductance in GaN/AlN heterostructure. J. Appl. Phys. 129(23): 235102. https://doi.org/10.1063/5.0052742 [58] Grimvall G. The Electron-Phonon Interaction in Metals. North Holland Publishing Company, 1981. [59] Plummer E W, Shi J, Tang S J, Rotenberg E, Kevan S D (2003) Enhanced electron-phonon coupling at metal surfaces. Prog. Surf. Sci. 74(1-8): 251-268. https://doi.org/10.1016/j.progsurf.2003.08.033 [60] Hengsberger M, Purdie D, Segovia P, Garnier M, Baer Y (1999) Photoemission study of a strongly coupled electron-phonon system. Phys. Rev. Lett. 83(3): 592-595. https://doi.org/10.1103/PhysRevLett.83.592 [61] Li M, Wang Y, Zhou J, Ren J, Li B (2015) Thermal boundary conductance across metal-nonmetal interfaces: effects of electron-phonon coupling both in metal and at interface. The European Physical Journal B, 88: 149. https://doi.org/10.1140/epjb/e2015-50771-8 [62] Swartz E T, Pohl R O (1989) Thermal boundary resistance. Rev. Mod. Phys. (61): 605. https://doi.org/10.1103/RevModPhys.61.605 [63] Young D A, Maris H J (1989) Lattice-dynamical calculation of the Kapitza resistance between fcc lattices. Physical Review. B, Condensed Matter 40(6): 3685-3693. https://doi.org/10.1103/PhysRevB.40.3685 [64] Giri A, Hopkins P E (2020) A review of experimental and computational advances in thermal boundary conductance and nanoscale thermal transport across solid interfaces. Adv. Funct. Mater. 30(8): 1903857. https://doi.org/10.1002/adfm.201903857 [65] Schelling P K, Phillpot S R, Keblinski P (2004) Kapitza conductance and phonon scattering at grain boundaries by simulation. J. Appl. Phys. 95(11): 6082-6091. https://doi.org/10.1063/1.1702100 [66] Li X, Yang R (2012) Effect of lattice mismatch on phonon transmission and interface thermal conductance across dissimilar material interfaces. Physical Review. B, Condensed Matter and Materials Physics 86(5): 054305. https://doi.org/10.1103/PhysRevB.86.054305 [67] Feng T, Zhong Y, Shi J, Ruan X (2019) Unexpected high inelastic phonon transport across solid-solid interface: modal nonequilibrium molecular dynamics simulations and Landauer analysis. Physical Review. B 99(4): 045301. https://doi.org/10.1103/PhysRevB.99.045301 [68] Liang Z, Keblinski P (2014) Finite-size effects on molecular dynamics interfacial thermal-resistance predictions. Physical Review. B, Condensed Matter and Materials Physics 90(7): 075411. https://doi.org/10.1103/PhysRevB.90.075411 [69] Altman D, Matthew T, James M, Samuel K, Samuel G, Jungwan C et al (2014) Analysis and characterization of thermal transport in GaN HEMTs on diamond substrates. Thermal and Thermomechanical Phenomena in Electronic Systems: 1199-1205 [70] Prejs A, Wood S, Pengelly R, Pribble W (2009) Thermal analysis and its application to high power GaN HEMT amplifiers. 2009 IEEE MTT-S International Microwave Symposium Digest, Boston, MA, USA, pp. 917-920. https://doi.org/10.1109/MWSYM.2009.5165847 [71] Lu L, Yi W, Zhang DL (2001) 3 ω method for specific heat and thermal conductivity measurements. Rev. Sci. Instrum. 7(72): 2996-3003. https://doi.org/10.1063/1.1378340 [72] Altman D, Tyhach M, McClymonds J, Kim S, Graham S, Cho J et al (2014) Analysis and characterization of thermal transport in GaN HEMTs on diamond substrates. Thermal and Thermomechanical Phenomena in Electronic Systems: 1199-1205. https://doi.org/10.1109/ITHERM.2014.6892416 [73] Pomeroy J W, Uren M J, Lambert B, Kuball M (2015) Operating channel temperature in GaN HEMTs: DC versus RF accelerated life testing. Microelectron. Reliab. 55(12): 2505-2510.https://doi.org/10.1016/j.microrel.2015.09.025 [74] Sang L (2021) Diamond as the heat spreader for the thermal dissipation of GaN-based electronic devices. Functional Diamond 1(1): 174-188. https://doi.org/10.1080/26941112.2021.1980356 [75] Chou Y C, Leung D, Smorchkova I, Wojtowicz M, Grundbacher R, Callejo L et al (2004) Degradation of AlGaN/GaN HEMTs under elevated temperature lifetesting. Microelectron. Reliab. 44(7): 1033-1038.https://doi.org/10.1016/j.microrel.2004.03.008 [76] May P W (1995) CVD diamond: a new technology for the future? Endeavour 19(3): 101-106.https://doi.org/10.1016/0160-9327(95)97494-S [77] Matsumoto S, Sato Y, Tsutsumi M, Setaka N (1982) Growth of diamond particles from methane-hydrogen gas. J. Mater. Sci. 17(11): 3106-3112. https://doi.org/10.1007/BF01203472 [78] Dar M A, Kim Y, Ansari S G, Kim H, Khang G, Van Chiem C et al (2005) Comparative study of diamond films grown on silicon substrate using microwave plasma chemical vapor deposition and hot-filament chemical vapor deposition technique. Korean J. Chem. Eng. 5(22): 770-773. https://doi.org/10.1007/BF02705797 [79] Ma B, Lian F (2013) Study on the use of CuSnTi brazing alloy for induction brazing of diamond grits surface-treated by direct current plasma chemical vapor deposition. International Journal of Refractory Metals and Hard Materials 41: 339-344. https://doi.org/10.1016/j.ijrmhm.2013.05.006 [80] Simon R B, Anaya J, Faili F, Balmer R, Williams G T, Twitchen D J et al (2016) Effect of grain size of polycrystalline diamond on its heat spreading properties. Appl. Phys. Express 9(6): 61302. https://doi.org/10.7567/APEX.9.061302 [81] Yaita J, Yamada A, Kotani J (2021) Growth of microcrystalline diamond films after fabrication of GaN high-electron-mobility transistors for effective heat dissipation. Jpn. J. Appl. Phys. 60(7): 76502. https://doi.org/10.35848/1347-4065/ac06d8 [82] Jia X, Wei J, Huang Y, Shao S, An K, Kong Y et al (2020) Enhancement of diamond seeding on aluminum nitride dielectric by electrostatic adsorption for GaN-on-diamond preparation. J. Mater. Res. 35(5): 508-515. https://doi.org/10.1557/jmr.2019.403 [83] Ahmed R, Siddique A, Anderson J, Gautam C, Holtz M, Piner E (2020) Integration of GaN and diamond using epitaxial lateral overgrowth. ACS Appl. Mater. Interfaces 12(35): 39397-39404. https://doi.org/10.1021/acsami.0c10065 [84] Hirama K, Kasu M, Taniyasu Y (2012) RF high-power operation of AlGaN/GaN HEMTs epitaxially grown on diamond. IEEE Electron Device Lett. 4(33): 513-515. https://doi.org/10.1109/LED.2012.2185678 [85] Dussaigne A, Gonschorek M, Malinverni M, Py M A, Martin D, Mouti A et al (2010) High-mobility AlGaN/GaN two-dimensional electron gas heterostructure grown on (111) single crystal diamond substrate. Jpn. J. Appl. Phys. 49(6): 061001-061001-4. https://doi.org/10.1143/JJAP.49.061001 [86] Gerrer T, Cimalla V, Waltereit P, Müller S, Benkhelifa F, Maier T et al (2018) Transfer of AlGaN/GaN RF-devices onto diamond substrates via van der Waals bonding. Int. J. Microw. Wirel. Technol. 10(5-6): 666-673. https://doi.org/10.1017/S1759078718000582 [87] Chao PC, Chu K, Creamer C (2013) A new high power GaN-on-diamond HEMT with low-temperature bonded substrate technology. CS MANTECH Conference, May 13-16, (2013) New Orleans. Louisiana, USA, pp 179-182 [88] Chao P, Chu K, Creamer C, Diaz J, Yurovchak T, Shur M et al (2015) Low-temperature bonded GaN-on-diamond HEMTs with 11 W/mm output power at 10 GHz. IEEE Trans. Electron Devices 62(11): 3658-3664. https://doi.org/10.1109/TED.2015.2480756 [89] Chao P C, Chu K, Diaz J, Creamer C, Sweetland S, Kallaher R et al (2016) GaN-on-diamond HEMTs with 11W/mm output power at 10GHz. MRS Adv. 2(1): 147-155. https://doi.org/10.1557/adv.2016 [90] Francis D, Faili F, Babić D, Ejeckam F, Nurmikko A, Maris H (2010) Formation and characterization of 4-inch GaN-on-diamond substrates. Diam. Relat. Mat. 19(2-3): 229-233. https://doi.org/10.1016/j.diamond.2009.08.017 [91] Cho J, Li Z, Bozorg-Grayeli E, Kodama T, Francis D, Ejeckam F et al (2013) Improved thermal interfaces of GaN-diamond composite substrates for HEMT applications. IEEE Transactions on Components, Packaging, and Manufacturing Technology (2011) 3(1): 79-85. https://doi.org/10.1109/TCPMT.2012.2223818 [92] Chu K K, Chao P C, Diaz J A, Yurovchak T, Creamer C T, Sweetland S et al (2014) S2-T4: Low-temperature substrate bonding technology for high power GaN-on-diamond HEMTs. 2014 Lester Eastman Conference on High Performance Devices (LEC), Ithaca, NY, USA, pp. 1-4. https://doi.org/10.1109/LEC.2014.6951558 [93] Gerrer T, Cimalla V, Waltereit P, Müller S M, Benkelifa F, Maier T et al. (2017) Transfer of AlGaN/GaN RF-devices onto diamond substrates via van der Waals bonding. _2017 12th European Microwave Integrated Circuits Conference (EuMIC), Nuremberg, Germany, 2017, pp. 25-28. https://doi.org/10.23919/EuMIC.2017.8230651 [94] Liu D, Francis D, Faili F, Middleton C, Anaya J, Pomeroy J W et al (2017) Impact of diamond seeding on the microstructural properties and thermal stability of GaN-on-diamond wafers for high-power electronic devices. Scr. Mater. 128: 57-60. https://doi.org/10.1016/j.scriptamat.2016.10.006 [95] Mu F, He R, Suga T (2018) Room temperature GaN-diamond bonding for high-power GaN-on-diamond devices. Scr. Mater. 150: 148-151. https://doi.org/10.1016/j.scriptamat.2018.03.016 [96] Cheng Z, Mu F, Yates L, Suga T, Graham S (2020) Interfacial thermal conductance across room-temperature-bonded GaN/diamond interfaces for GaN-on-diamond devices. ACS Appl. Mater. Interfaces 12(7): 8376-8384. https://doi.org/10.1021/acsami.9b16959 [97] Mu F, Xu B, Wang X, Gao R, Huang S, Wei K et al (2022) A novel strategy for GaN-on-diamond device with a high thermal boundary conductance. J. Alloy. Compd. 905: 164076. https://doi.org/10.1016/j.jallcom.2022.164076 [98] Xu B, Mu F, Liu Y, Guo R, Hu S, Shiomi J (2024) Low thermal boundary resistance at bonded GaN/diamond interface by controlling ultrathin heterogeneous amorphous layer. arXiv 2404: 15738. https://doi.org/10.48550/arxiv.2404.15738 [99] Liang J, Kobayashi A, Shimizu Y, Ohno Y, Kim S W, Koyama K et al (2021) Fabrication of GaN/diamond heterointerface and interfacial chemical bonding state for highly efficient device design. Adv. Mater. 33(43): 2104564. https://doi.org/10.1002/adma.202104564 [100] Mu F, Suga T (2018) Room temperature GaN bonding by surface activated bonding methods. 2018 19th International Conference on Electronic Packaging Technology (ICEPT), Shanghai, China, pp. 521-524. https://doi.org/10.1109/ICEPT.2018.8480574 [101] Zhou Y, Zhou S, Wan S, Zou B, Feng Y, Mei R et al (2023) Tuning the interlayer microstructure and residual stress of buffer-free direct bonding GaN/Si heterostructures. Appl. Phys. Lett. 122(8): 082103. https://doi.org/10.1063/5.0135138 [102] Smith M D, Cuenca J A, Field D E, Fu Y, Yuan C, Massabuau F et al (2020) GaN-on-diamond technology platform: bonding-free membrane manufacturing process. AIP Adv. 10(3): 035306-035306-5. https://doi.org/10.1063/1.5129229 [103] Schwander M, Partes K (2011) A review of diamond synthesis by CVD processes. Diam. Relat. Mat. 20(9): 1287-1301. https://doi.org/10.1016/j.diamond.2011.08.005 [104] Ejeckam F, Babić D, Faili F, Francis D, Lowe F, Diduck Q et al (2014) 3,000+ Hours continuous operation of GaN-on-diamond HEMTs at 350℃ channel temperature. _ 2014 Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM), San Jose, CA, USA, pp. 242-246. https://doi.org/10.1109/SEMI-THERM.2014.6892247 [105] Babchenko O, Dzuba J, Lalinský T, Vojs M, Vincze A, Ižák T et al (2017) Stability of AlGaN/GaN heterostructures after hydrogen plasma treatment. Appl. Surf. Sci. 395: 92-97. https://doi.org/10.1016/j.apsusc.2016.06.105 [106] May P W, Tsai H Y, Wang W N, Smith J A (2006) Deposition of CVD diamond onto GaN. Diam. Relat. Mat. 15(4-8): 526-530. https://doi.org/10.1016/j.diamond.2005.11.036 [107] Kita R, Hachiya R, Mizutani T, Furuhashi H, Kikuchi A (2015) Characterization of hydrogen environment anisotropic thermal etching and application to GaN nanostructure fabrication. Jpn. J. Appl. Phys. 54(4): 46501-1-046501-5. https://doi.org/10.7567/JJAP.54.046501 [108] Yeh Y, Chen K, Wu Y, Hsu Y, Yu T, Lee W (2011) Hydrogen etching of GaN and its application to produce free-standing GaN thick films. J. Cryst. Growth 333(1): 16-19. https://doi.org/10.1016/j.jcrysgro.2011.08.022 [109] Koley G, Spencer M G (2005) On the origin of the two-dimensional electron gas at the AlGaN∕GaN heterostructure interface. Appl. Phys. Lett. 86(4): 042107. https://doi.org/10.1063/1.1850600 [110] Izak T, Babchenko O, Jirásek V, Vanko G, Vojs M, Kromka A (2015) Influence of diamond CVD growth conditions and interlayer material on diamond/GaN interface. Materials Science Forum 821-823: 982-985. https://doi.org./https://doi.org/10.4028/www.scientific.net/MSF.821-823.982 [111] Cho J, Won Y, Francis D, Asheghi M, Goodson K E (2014) Thermal interface resistance measurements for GaN-on-diamond composite substrates. 2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), La Jolla, CA, USA, pp. 1-4. https://doi.org/10.1109/CSICS.2014.6978583 [112] Sun H, Pomeroy J W, Simon R B, Francis D, Faili F, Twitchen D J et al (2016) Temperature-dependent thermal resistance of GaN-on-diamond HEMT wafers. IEEE Electron Device Lett. 37(5): 621-624. https://doi.org./https://doi.org/10.1109/LED.2016.2537835 [113] Cho J, Francis D, Altman D H, Asheghi M, Goodson K E (2017) Phonon conduction in GaN-diamond composite substrates. J. Appl. Phys. 121(5): 055105. https://doi.org/10.1063/1.4975468 [114] Wang Y, Zhou B, Ma G, Zhi J, Yuan C, Sun H et al (2023) Effect of bias-enhanced nucleation on the microstructure and thermal boundary resistance of GaN/SiNx/diamond multilayer composites. Mater. Charact. 201: 112985. https://doi.org/10.1016/j.matchar.2023.112985 [115] Jia X, Wei J J, Kong Y, Li C M, Liu J, Chen L et al (2019) The influence of dielectric layer on the thermal boundary resistance of GaN‐on‐diamond substrate. Surf. Interface Anal. 51(7): 783-790. https://doi.org/10.1002/sia.6649 [116] Field D E, Cuenca J A, Smith M, Fairclough S M, Massabuau F C, Pomeroy J W et al (2020) Crystalline interlayers for reducing the effective thermal boundary resistance in GaN-on-diamond. ACS Appl. Mater. Interfaces 12(48): 54138-54145. https://doi.org/10.1021/acsami.0c10129 [117] Jia X, Huang L, Sun M, Zhao X, Wei J, Li C (2022) The effect of interlayer microstructure on the thermal boundary resistance of GaN-on-Diamond Substrate. Coatings 12(5): 672. https://doi.org/10.3390/coatings12050672 [118] Liu J, Tian H, Chen L, Wei J, Hei L, Li C (2016) Preparation of nano-diamond films on GaN with a Si buffer layer. New Carbon Mater. 31(5): 518-524. https://doi.org/10.1016/S1872-5805(16)60029-X [119] Liu D, Fabes S, Li B, Francis D, Ritchie R O, Kuball M (2019) Characterization of the interfacial toughness in a novel “GaN-on-diamond” material for high-power RF devices. ACS Appl. Electron. Mater. 1(3): 354-369. https://doi.org/10.1021/acsaelm.8b00091 [120] Zhou Q, Ren Y, Du Y, Hua D P, Han W C, Xia Q S (2019) Adhesion energy and related plastic deformation mechanism of Cu/Ru nanostructured multilayer film. J. Alloy. Compd. 772: 823-827. https://doi.org/10.1016/j.jallcom.2018.09.111 [121] Rosenberger L, Baird R, McCullen E, Auner G, Shreve G (2008) XPS analysis of aluminum nitride films deposited by plasma source molecular beam epitaxy. Surf. Interface Anal. 40(9): 1254-1261. https://doi.org/10.1002/sia.2874 [122] Sung J, Shen Y R, Waychunas G A (2012) The interfacial structure of water/protonated α-Al2O3(1120) as a function of pH. Journal of Physics. Condensed Matter 24(12): 124101. https://doi.org/10.1088/0953-8984/24/12/124101 [123] Krnel K, Kosmac T (2000) Reactivity of aluminum nitride powder in dilute inorganic acids. J. Am. Ceram. Soc. 83(6): 1375-1378. https://doi.org/10.1111/j.1151-2916.2000.tb01396.x [124] Siddique A, Ahmed R, Anderson J, Nazari M, Yates L, Graham S et al (2019) Structure and interface analysis of diamond on an AlGaN/GaN HEMT utilizing an in situ SiNx interlayer grown by MOCVD. ACS Appl. Electron. Mater. 1(8): 1387-1399. https://doi.org/10.1021/acsaelm.9b00131 [125] Gu Y, Zhang Y, Hua B, Ni X, Fan Q, Gu X (2021) Interface engineering enabling next generation GaN-on-diamond power devices. J. Electron. Mater. 50(8): 4239-4249. https://doi.org/10.1007/s11664-021-09011-6 [126] Zou Y S, Yang Y, Chong Y M, Ye Q, He B, Yao Z Q et al (2008) Chemical vapor deposition of diamond films on patterned GaN substrates via a thin silicon nitride protective layer. Cryst. Growth Des. 8(5): 1770-1773. https://doi.org/10.1021/cg070267a [127] Tadjer M J, Anderson T J, Hobart K D, Feygelson T I, Caldwell J D, Eddy C R et al (2012) Reduced self-heating in AlGaN/GaN HEMTs using nanocrystalline diamond heat-spreading films. IEEE Electron Device Lett. 33(1): 23-25. https://doi.org/10.1109/LED.2011.2171031 [128] Shoemaker D, Malakoutian M, Chatterjee B, Song Y, Kim S, Foley B M et al (2021) Diamond-incorporated flip-chip integration for thermal management of GaN and ultra-wide bandgap RF power amplifiers. IEEE Transactions on Components, Packaging and Manufacturing Technology 11(8): 1177-1186. https://doi.org/10.1109/TCPMT.2021.3091555 [129] Baltynov T, Unni V, Sankara Narayanan EM (2016) The world’s first high voltage GaN-on-Diamond power semiconductor devices. Solid-State Electron 125:111-117. https://doi.org/10.1016/j.sse.2016.07.022 [130] Bozorg-Grayeli E, Sood A, Asheghi M, Gambin V, Sandhu R, Feygelson T I et al (2013) Thermal conduction inhomogeneity of nanocrystalline diamond films by dual-side thermoreflectance. Appl. Phys. Lett. 102(11): 111907. https://doi.org/10.1063/1.4796168 [131] Graebner J E, Jin S, Kammlott G W, Herb J A, Gardinier C F (1992) Large anisotropic thermal conductivity in synthetic diamond films. Nature (London) 359(6394): 401-403. https://doi.org/10.1038/359401a0 [132] Bar-Cohen A M J J A (2015) Near-junction microfluidic cooling for wide bandgap devices. IEEE International Conference on Microwaves, Communications, Antennas, and Electronic Systems (COMCAS 2015). https://doi.org/10.1557/adv.2016.120 [133] Altman D, Tyhach M, McClymonds J, Kim S, Graham S, Cho J et al (2014) Analysis and characterization of thermal transport in GaN HEMTs on diamond substrates. Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Orlando, FL, USA, 2014, pp. 1199-1205. https://doi.org/10.1109/ITHERM.2014.6892416 [134] Matsumae T, Kurashima Y, Takagi H, Shirayanagi Y, Hiza S, Nishimura K et al (2022) Room temperature bonding of GaN and diamond substrates via atomic layer. Scr. Mater. 215: 114725. https://doi.org/10.1016/j.scriptamat.2022.114725 [135] Xu J, Du Y, Tian Y, Wang C (2020) Progress in wafer bonding technology towards MEMS, high-power electronics, optoelectronics, and optofluidics. Int. J. Optomechatronics 14(1): 94-118. https://doi.org/10.1080/15599612.2020.1857890 [136] Cheng Z, Graham S, Amano H, Cahill D G (2022) Perspective on thermal conductance across heterogeneously integrated interfaces for wide and ultrawide bandgap electronics. Appl. Phys. Lett. 120(3): 030501. https://doi.org/10.1063/5.0077039 |
| No related articles found! |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||