[1] Seebeck TJ (1826) Ueber die magnetische polarisation der metalle und erze durch temperatur-differenz. Ann Phys 82:133-160. https://doi.org/10.1002/andp.18260820202 [2] Shi X-L, Zou J, Chen Z-G (2020) Advanced thermoelectric design: From materials and structures to devices. Chem Rev 120:7399-7515. https://doi.org/10.1021/acs.chemrev.0c00026 [3] Wang Z, Leonov V, Fiorini P, Van Hoof C (2009) Realization of a wearable miniaturized thermoelectric generator for human body applications. Sens Actuators A Phys 156:95-102. https://doi.org/10.1016/j.sna.2009.02.028 [4] DiSalvo FJ (1999) Thermoelectric cooling and power generation. Science 285:703-706. https://doi.org/10.1126/science.285.5428.703 [5] Wang H, Yu C (2019) Organic thermoelectrics: Materials preparation, performance optimization, and device integration. Joule 3:53-80. https://doi.org/10.1016/j.joule.2018.10.012 [6] Russ B, Glaudell A, Urban JJ, Chabinyc ML, Segalman RA (2016) Organic thermoelectric materials for energy harvesting and temperature control. Nat Rev Mater 1:16050. https://doi.org/10.1038/natrevmats.2016.50 [7] Peterson KA, Thomas EM, Chabinyc ML (2020) Thermoelectric properties of semiconducting polymers. Annu Rev Mater Res 50:551-574. https://doi.org/10.1146/annurev-matsci-082219-024716 [8] Song Y, Dai X, Zou Y, Li C, Di C-a, Zhang D et al (2023) Boosting the thermoelectric performance of the doped DPP-EDOT conjugated polymer by incorporating an ionic additive. Small 19:2300231. https://doi.org/10.1002/smll.202300231 [9] Wang D, Ding J, Dai X, Xiang L, Ye D, He Z et al (2023) Triggering ZT to 0.40 by engineering orientation in one polymeric semiconductor. Adv Mater 35:2208215. https://doi.org/10.1002/adma.202208215 [10] Bundgaard E, Hagemann O, Bjerring M, Nielsen NC, Andreasen JW, Andreasen B et al (2012) Removal of solubilizing side chains at low temperature: A new route to native poly(thiophene). Macromolecules 45:3644-3646. https://doi.org/10.1021/ma300075x [11] Li CA, Shan C, Luo D, Gu X, Le Q, Kyaw AKK et al (2024) Great enhancement in the seebeck coefficient of PEDOT:PSS by polaron level splitting via π-π overlapping with nonpolar small aromatic molecules. Adv Funct Mater 34:2311578. https://doi.org/10.1002/adfm.202311578 [12] Kiefer D, Kroon R, Hofmann AI, Sun H, Liu X, Giovannitti A et al (2019) Double doping of conjugated polymers with monomer molecular dopants. Nat Mater 18:149-155. https://doi.org/10.1038/s41563-018-0263-6 [13] Guchait S, Dash A, Lemaire A, Herrmann L, Kemerink M, Brinkmann M (2024) Phase-selective doping of oriented regioregular poly(3-hexylthiophene-2,5-diyl) controls stability of thermoelectric properties. Adv Funct Mater n/a:2404411. https://doi.org/10.1002/adfm.202404411 [14] Lim E, Peterson KA, Su GM, Chabinyc ML (2018) Thermoelectric properties of poly(3-hexylthiophene) (P3HT) doped with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) by vapor-phase infiltration. Chem Mater 30:998-1010. https://doi.org/10.1021/acs.chemmater.7b04849 [15] Scholes DT, Yee PY, McKeown GR, Li S, Kang H, Lindemuth JR et al (2019) Designing conjugated polymers for molecular doping: The roles of crystallinity, swelling, and conductivity in sequentially-doped selenophene-based copolymers. Chem Mater 31:73-82. https://doi.org/10.1021/acs.chemmater.8b02648 [16] Yoon SE, Kang Y, Im J, Lee J, Lee SY, Park J et al (2023) Enhancing dopant diffusion for ultrahigh electrical conductivity and efficient thermoelectric conversion in conjugated polymers. Joule 7:2291-2317. https://doi.org/10.1016/j.joule.2023.09.002 [17] Yamashita Y, Tsurumi J, Ohno M, Fujimoto R, Kumagai S, Kurosawa T et al (2019) Efficient molecular doping of polymeric semiconductors driven by anion exchange. Nature 572:634-638. https://doi.org/10.1038/s41586-019-1504-9 [18] Zuo G, Liu X, Fahlman M, Kemerink M (2018) Morphology determines conductivity and Seebeck coefficient in conjugated polymer blends. ACS Appl Mater Interfaces 10:9638-9644. https://doi.org/10.1021/acsami.8b00122 [19] Durand P, Zeng H, Biskup T, Vijayakumar V, Untilova V, Kiefer C et al (2022) Single ether-based side chains in conjugated polymers: Toward power factors of 2.9 mW m-1 K-2. Adv. Energy Mater 12:2103049. https://doi.org/10.1002/aenm.202103049 [20] Kumari N, Pandey M, Nagamatsu S, Nakamura M, Pandey SS (2020) Investigation and control of charge transport anisotropy in highly oriented friction-transferred polythiophene thin films. ACS Appl Mater Interfaces 12:11876-11883. https://doi.org/10.1021/acsami.9b23345 [21] Goel M, Thelakkat M (2020) Polymer thermoelectrics: Opportunities and challenges. Macromolecules 53:3632-3642. https://doi.org/10.1021/acs.macromol.9b02453 [22] Zhao W, Ding J, Zou Y, Di C-a, Zhu D (2020) Chemical doping of organic semiconductors for thermoelectric applications. Chem Soc Rev 49:7210-7228. https://doi.org/10.1039/D0CS00204F [23] Wang S, Zuo G, Kim J, Sirringhaus H (2022) Progress of conjugated polymers as emerging thermoelectric materials. Prog Polym Sci 129:101548. https://doi.org/10.1016/j.progpolymsci.2022.101548 [24] Chen Y, Zhao Y, Liang Z (2015) Solution processed organic thermoelectrics: Towards flexible thermoelectric modules. Energy Environ Sci 8:401-422. https://doi.org/10.1039/C4EE03297G [25] Di C-a, Xu W, Zhu D (2016) Organic thermoelectrics for green energy. Natl Sci Rev 3:269-271. https://doi.org/10.1093/nsr/nww040 [26] He X, Hao Y, He M, Qin X, Wang L, Yu J (2021) Stretchable thermoelectric-based self-powered dual-parameter sensors with decoupled temperature and strain sensing. ACS Appl Mater Interfaces 13:60498-60507. https://doi.org/10.1021/acsami.1c20456 [27] Jacobs IE, Moulé AJ (2017) Controlling molecular doping in organic semiconductors. Adv Mater 29:1703063. https://doi.org/10.1002/adma.201703063 [28] Deng L, Liu Y, Zhang Y, Wang S, Gao P (2023) Organic thermoelectric materials: Niche harvester of thermal energy. Adv Funct Mater 33:2210770. https://doi.org/10.1002/adfm.202210770 [29] Ding J, Liu Z, Zhao W, Jin W, Xiang L, Wang Z et al (2019) Selenium-substituted diketopyrrolopyrrole polymer for high-performance p-type organic thermoelectric materials. Angew Chem Int Ed 58:18994-18999. https://doi.org/10.1002/anie.201911058 [30] Liu J, Ye G, Potgieser HGO, Koopmans M, Sami S, Nugraha MI et al (2021) Amphipathic side chain of a conjugated polymer optimizes dopant location toward efficient n-type organic thermoelectrics. Adv Mater 33:2006694. https://doi.org/10.1002/adma.202006694 [31] Ponder JF Jr, Gregory SA, Atassi A, Menon AK, Lang AW, Savagian LR et al (2022) Significant enhancement of the electrical conductivity of conjugated polymers by post-processing side chain removal. J Am Chem Soc 144:1351-1360. https://doi.org/10.1021/jacs.1c11558 [32] Shi K, Zhang F, Di C-A, Yan T-W, Zou Y, Zhou X et al (2015) Toward high performance n-type thermoelectric materials by rational modification of bdppv backbones. J Am Chem Soc 137:6979-6982. https://doi.org/10.1021/jacs.5b00945 [33] Kiefer D, Giovannitti A, Sun H, Biskup T, Hofmann A, Koopmans M et al (2018) Enhanced n-doping efficiency of a naphthalenediimide-based copolymer through polar side chains for organic thermoelectrics. ACS Energy Lett 3:278-285. https://doi.org/10.1021/acsenergylett.7b01146 [34] Un H-I, Gregory SA, Mohapatra SK, Xiong M, Longhi E, Lu Y et al (2019) Understanding the effects of molecular dopant on n-type organic thermoelectric properties. Adv Energy Mater 9:1900817. https://doi.org/10.1002/aenm.201900817 [35] Lu Y, Yu Z-D, Liu Y, Ding Y-F, Yang C-Y, Yao Z-F et al (2020) The critical role of dopant cations in electrical conductivity and thermoelectric performance of n-doped polymers. J Am Chem Soc 142:15340-15348. https://doi.org/10.1021/jacs.0c05699 [36] Li H, Song J, Xiao J, Wu L, Katz HE, Chen L (2020) Synergistically improved molecular doping and carrier mobility by copolymerization of donor-acceptor and donor-donor building blocks for thermoelectric application. Adv Funct Mater 30:2004378. https://doi.org/10.1002/adfm.202004378 [37] Culebras M, Gómez CM, Cantarero A (2014) Enhanced thermoelectric performance of pedot with different counter-ions optimized by chemical reduction. J Mater Chem A 2:10109-10115. https://doi.org/10.1039/C4TA01012D [38] Bubnova O, Khan ZU, Malti A, Braun S, Fahlman M, Berggren M et al (2011) Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). Nat Mater 10:429-433. https://doi.org/10.1038/nmat3012 [39] Kim GH, Shao L, Zhang K, Pipe KP (2013) Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat Mater 12:719-723. https://doi.org/10.1038/nmat3635 [40] Qu S, Yao Q, Wang L, Chen Z, Xu K, Zeng H et al (2016) Highly anisotropic P3HT films with enhanced thermoelectric performance via organic small molecule epitaxy. NPG Asia Mater 8:e292-e292. https://doi.org/10.1038/am.2016.97 [41] Wang D, Ding J, Ma Y, Xu C, Li Z, Zhang X et al (2024) Multi-heterojunctioned plastics with high thermoelectric figure of merit. Nature. https://doi.org/10.1038/s41586-024-07724-2 [42] Lu Y, Yu Z-D, Un H-I, Yao Z-F, You H-Y, Jin W et al (2021) Persistent conjugated backbone and disordered lamellar packing impart polymers with efficient n-doping and high conductivities. Adv Mater 33:2005946. https://doi.org/10.1002/adma.202005946 [43] Sun Y, Qiu L, Tang L, Geng H, Wang H, Zhang F et al (2016) Flexible n-type high-performance thermoelectric thin films of poly(nickel-ethylenetetrathiolate) prepared by an electrochemical method. Adv Mater 28:3351-3358. https://doi.org/10.1002/adma.201505922 [44] Liu J, van der Zee B, Alessandri R, Sami S, Dong J, Nugraha MI et al (2020) N-type organic thermoelectrics: Demonstration of ZT > 0.3. Nat Commun 11:5694. https://doi.org/10.1038/s41467-020-19537-8 [45] Han J, Jiang Y, Tiernan E, Ganley C, Song Y, Lee T et al (2023) Blended conjugated host and unconjugated dopant polymers towards n-type all-polymer conductors and high-ZT thermoelectrics. Angew Chem Int Ed 62:e202219313. https://doi.org/10.1002/anie.202219313 [46] Zhao Y, Li Z, Wang D, Zhang X, Ji Z, Niu L et al (2024) High performance and colorful polymer thermoelectrics with imprinted porous film. Adv Mater n/a:2407692. https://doi.org/10.1002/adma.202407692 [47] Kang K, Watanabe S, Broch K, Sepe A, Brown A, Nasrallah I et al (2016) 2D coherent charge transport in highly ordered conducting polymers doped by solid state diffusion. Nat Mater 15:896-902. https://doi.org/10.1038/nmat4634 [48] Vijayakumar V, Zaborova E, Biniek L, Zeng H, Herrmann L, Carvalho A et al (2019) Effect of alkyl side chain length on doping kinetics, thermopower, and charge transport properties in highly oriented F4TCNQ-doped PBTTT films. ACS Appl Mater Interfaces 11:4942-4953. https://doi.org/10.1021/acsami.8b17594 [49] Kroon R, Mengistie DA, Kiefer D, Hynynen J, Ryan JD, Yu L et al (2016) Thermoelectric plastics: From design to synthesis, processing and structure-property relationships. Chem Soc Rev 45:6147-6164. https://doi.org/10.1039/C6CS00149A [50] Kang SD, Snyder GJ (2017) Charge-transport model for conducting polymers. Nat Mater 16:252-257. https://doi.org/10.1038/nmat4784 [51] Lu Y, Wang J-Y, Pei J (2019) Strategies to enhance the conductivity of n-type polymer thermoelectric materials. Chem Mater 31:6412-6423. https://doi.org/10.1021/acs.chemmater.9b01422 [52] Sun Y, Sheng P, Di C, Jiao F, Xu W, Qiu D et al (2012) Organic thermoelectric materials and devices based on p- and n-type poly(metal 1,1,2,2-ethenetetrathiolate)s. Adv Mater 24:932-937. https://doi.org/10.1002/adma.201104305 [53] Aljaghtham M (2024) A comparative performance analysis of thermoelectric generators with a novel leg geometries. Energy Rep 11:859-876. https://doi.org/10.1016/j.egyr.2023.12.041 [54] Zhang Q, Deng K, Wilkens L, Reith H, Nielsch K (2022) Micro-thermoelectric devices. Nat Electron 5:333-347. https://doi.org/10.1038/s41928-022-00776-0 [55] Wu G, Gao C, Chen G, Wang X, Wang H (2016) High-performance organic thermoelectric modules based on flexible films of a novel n-type single-walled carbon nanotube. J Mater Chem A 4:14187-14193. https://doi.org/10.1039/C6TA05120K [56] Yu Z-D, Lu Y, Wang Z-Y, Un H-I, Zelewski SJ, Cui Y et al (2023) High n-type and p-type conductivities and power factors achieved in a single conjugated polymer. Sci Adv 9:eadf3495. https://doi.org/10.1126/sciadv.adf3495 [57] Kim A, Kumar P, Annamalai PK, Patel R (2022) Recent advances in the nanomaterials, design, fabrication approaches of thermoelectric nanogenerators for various applications. Adv Mater Interfaces 9:2201659. https://doi.org/10.1002/admi.202201659 [58] Zheng D, Zhang J, Sun S, Liang J, Li Y, Luo J et al (2024) Flexible organic thermoelectric composites and devices with enhanced performances through fine-tuning of molecular energy levels. ACS Appl Electron Mater 6:4754-4763. https://doi.org/10.1021/acsaelm.4c00796 [59] Kim D, Ju D, Cho K (2018) Heat-sink-free flexible organic thermoelectric generator vertically operating with chevron structure. Adv Mater Technol 3:1700335. https://doi.org/10.1002/admt.201700335 [60] Rösch AG, Gall A, Aslan S, Hecht M, Franke L, Mallick MM et al (2021) Fully printed origami thermoelectric generators for energy-harvesting. npj Flexible Electronics 5:1. https://doi.org/10.1038/s41528-020-00098-1 [61] Menon AK, Meek O, Eng AJ, Yee SK (2017) Radial thermoelectric generator fabricated from n- and p-type conducting polymers. J Appl Polym Sci 134. https://doi.org/10.1002/app.44060 [62] Champier D (2017) Thermoelectric generators: A review of applications. Energy Convers Manage 140:167-181. https://doi.org/10.1016/j.enconman.2017.02.070 [63] Starner T (1996) Human-powered wearable computing. IBM Syst J 35:618-629. https://doi.org/10.1147/sj.353.0618 [64] Huang L, Lin S, Xu Z, Zhou H, Duan J, Hu B et al (2020) Fiber-based energy conversion devices for human-body energy harvesting. Adv Mater 32:1902034. https://doi.org/10.1002/adma.201902034 [65] Jia Y, Jiang Q, Sun H, Liu P, Hu D, Pei Y et al (2021) Wearable thermoelectric materials and devices for self-powered electronic systems. Adv Mater 33:2102990. https://doi.org/10.1002/adma.202102990 [66] Song H, Cai K (2017) Preparation and properties of PEDOT:PSS/Te nanorod composite films for flexible thermoelectric power generator. Energy 125:519-525. https://doi.org/10.1016/j.energy.2017.01.037 [67] Du Y, Cai K, Chen S, Wang H, Shen SZ, Donelson R et al (2015) Thermoelectric fabrics: Toward power generating clothing. Sci Rep 5:6411. https://doi.org/10.1038/srep06411 [68] Sun T, Zhou B, Zheng Q, Wang L, Jiang W, Snyder GJ (2020) Stretchable fabric generates electric power from woven thermoelectric fibers. Nat Commun 11:572. https://doi.org/10.1038/s41467-020-14399-6 [69] Darabi S, Yang C-Y, Li Z, Huang J-D, Hummel M, Sixta H et al (2023) Polymer-based n-type yarn for organic thermoelectric textiles. Adv Electron Mater 9:2201235. https://doi.org/10.1002/aelm.202201235 [70] Wu Q, Hu J (2017) A novel design for a wearable thermoelectric generator based on 3D fabric structure. Smart Mater Struct 26:045037. https://doi.org/10.1088/1361-665X/aa5694 [71] Lu X, Sun L, Jiang P, Bao X (2019) Progress of photodetectors based on the photothermoelectric effect. Adv Mater 31:1902044. https://doi.org/10.1002/adma.201902044 [72] Xu B, An Y, Zhu J, He Y (2024) Flexible photosensors based on photothermal conversion. Green Chem Eng. https://doi.org/10.1016/j.gce.2024.03.001 [73] Jin X-z, Li H, Wang Y, Yang Z-y, Qi X-d, Yang J-h et al (2022) Ultraflexible PEDOT:PSS/Helical carbon nanotubes film for all-in-one photothermoelectric conversion. ACS Appl Mater Interfaces 14:27083-27095. https://doi.org/10.1021/acsami.2c05875 [74] Kim B, Shin H, Park T, Lim H, Kim E (2013) Nir-sensitive poly(3,4-ethylenedioxyselenophene) derivatives for transparent photo-thermo-electric converters. Adv Mater 25:5483-5489. https://doi.org/10.1002/adma.201301834 [75] Jurado JP, Dörling B, Zapata-Arteaga O, Roig A, Mihi A, Campoy-Quiles M (2019) Solar harvesting: A unique opportunity for organic thermoelectrics? Adv Energy Mater 9:1902385. https://doi.org/10.1002/aenm.201902385 [76] Tang X-H, Jin X-Z, Zhang Q, Zhao Q, Yang Z-Y, Fu Q (2023) Achieving free-standing PEDOT:PSS solar generators with efficient all-in-one photothermoelectric conversion. ACS Appl Mater Interfaces 15:23286-23298. https://doi.org/10.1021/acsami.3c02852 [77] Lee JJ, Yoo D, Park C, Choi HH, Kim JH (2016) All organic-based solar cell and thermoelectric generator hybrid device system using highly conductive PEDOT:PSS film as organic thermoelectric generator. Sol Energy 134:479-483. https://doi.org/10.1016/j.solener.2016.05.006 [78] Zhang X, Li T-T, Ren H-T, Peng H-K, Shiu B-C, Wang Y et al (2020) Dual-shell photothermoelectric textile based on a ppy photothermal layer for solar thermal energy harvesting. ACS Appl Mater Interfaces 12:55072-55082. https://doi.org/10.1021/acsami.0c16401 [79] Yang Y, Lin Z-H, Hou T, Zhang F, Wang ZL (2012) Nanowire-composite based flexible thermoelectric nanogenerators and self-powered temperature sensors. Nano Res 5:888-895. https://doi.org/10.1007/s12274-012-0272-8 [80] Wang Y-F, Sekine T, Takeda Y, Yokosawa K, Matsui H, Kumaki D et al (2020) Fully printed PEDOT:PSS-based temperature sensor with high humidity stability for wireless healthcare monitoring. Sci Rep 10:2467. https://doi.org/10.1038/s41598-020-59432-2 [81] Zhang F, Zang Y, Huang D, Di C-a, Zhu D (2015) Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials. Nat Commun 6:8356. https://doi.org/10.1038/ncomms9356 [82] Wen N, Fan Z, Yang S, Guo Y, Zhang J, Lei B et al (2022) Highly stretchable, breathable, and self-powered strain-temperature dual-functional sensors with laminated structure for health monitoring, hyperthermia, and physiotherapy applications. Adv Electron Mater 8:2200680. https://doi.org/10.1002/aelm.202200680 [83] Tang J, Ni H, Peng R-L, Wang N, Zuo L (2023) A review on energy conversion using hybrid photovoltaic and thermoelectric systems. J Power Sources 562:232785. https://doi.org/10.1016/j.jpowsour.2023.232785 [84] Suzuki T, Yoshikawa K, Momose S (2010) Integration of organic photovoltaic and thermoelectric hybrid module for energy harvesting applications. Int Electr Devices Meeting 31.36.31-31.36.34. https://doi.org/10.1109/IEDM.2010.5703460 [85] Li M, Xiong Y, Wei H, Yao F, Han Y, Du Y et al (2023) Flexible Te/PEDOT:PSS thin films with high thermoelectric power factor and their application as flexible temperature sensors. Nanoscale 15:11237-11246. https://doi.org/10.1039/D3NR01516E [86] Du M, Ouyang J, Zhang K (2023) Flexible Bi2Te3/PEDOT nanowire sandwich-like films towards high-performance wearable cross-plane thermoelectric generator and temperature sensor array. J Mater Chem A 11:16039-16048. https://doi.org/10.1039/D3TA02876C [87] Jung M, Jeon S, Bae J (2018) Scalable and facile synthesis of stretchable thermoelectric fabric for wearable self-powered temperature sensors. RSC Adv 8:39992-39999. https://doi.org/10.1039/C8RA06664G [88] Guo X, Lu X, Jiang P, Bao X (2024) Touchless thermosensation enabled by flexible infrared photothermoelectric detector for temperature prewarning function of electronic skin. Adv Mater 36:2313911. https://doi.org/10.1002/adma.202313911 [89] Xu L, Liu Y, Garrett MP, Chen B, Hu B (2013) Enhancing seebeck effects by using excited states in organic semiconducting polymer MEH-PPV based on multilayer electrode/polymer/electrode thin-film structure. J Phys Chem C 117:10264-10269. https://doi.org/10.1021/jp4000957 [90] Huang D, Zou Y, Jiao F, Zhang F, Zang Y, Di C-a et al (2015) Interface-located photothermoelectric effect of organic thermoelectric materials in enabling nir detection. ACS Appl Mater Interfaces 7:8968-8973. https://doi.org/10.1021/acsami.5b01460 [91] Li Y, Zhang Y, Li T, Tang X, Li M, Chen Z et al (2020) A fast response, self-powered and room temperature near infrared-terahertz photodetector based on a MAPBI3/PEDOT:PSS composite. J Mater Chem C 8:12148-12154. https://doi.org/10.1039/D0TC02399J [92] Jin W, Liu L, Yang T, Shen H, Zhu J, Xu W et al (2018) Exploring peltier effect in organic thermoelectric films. Nat Commun 9:3586. https://doi.org/10.1038/s41467-018-05999-4 [93] Wang S-J, Wohlrab S, Reith H, Berger D, Kleemann H, Nielsch K et al (2022) Doped organic micro-thermoelectric coolers with rapid response time. Adv Electron Mater 8:2200629. https://doi.org/10.1002/aelm.202200629 |