[1] Keshavarzi A, Ni K, Hoek WVD, Datta S, Raychowdhury A (2020) FerroElectronics for edge intelligence. IEEE Micro 40(6):33-48. https://doi.org/10.1109/mm.2020.3026667 [2] Sebastian A, Le Gallo M, Khaddam-Aljameh R, Eleftheriou E (2020) Memory devices and applications for in-memory computing. Nat Nanotechnol 15(7):529-544. https://doi.org/10.1038/s41565-020-0655-z [3] Zeng G, Pham TA, Vanka S, Liu G, Song C, Cooper KJ et al (2021) Development of a photoelectrochemically self-improving Si/GaN photocathode for efficient and durable H2 production. Nat Mater 20(8):1130-1135. https://doi.org/10.1038/s41563-021-00965-w [4] Mishra UK, Shen L, Kazior TE, Kazior T, Wu Y (2008) GaN-based RF power devices and amplifiers. Proc IEEE 96(2):287-305. https://doi.org/10.1109/jproc.2007.911060 [5] Lin S, Wang D, Tong Y, Shen B, Wang X (2020) III-nitrides based resonant tunneling diodes. J Phys D: Appl Phys 53(25):253002. https://doi.org/10.1088/1361-6463/ab7f71 [6] Fichtner S, Wolff N, Lofink F, Kienle L, Wagner B (2019) AlScN: A III-V semiconductor-based ferroelectric. J Appl Phys 125(11):114103. https://doi.org/10.1063/1.5084945 [7] Tsai SL, Hoshii T, Wakabayashi H, Tsutsui K, Chung TK, Chang EY et al (2021) On the thickness scaling of ferroelectricity in Al0.78Sc0.22N films. Jpn J Appl Phys 60(SB):SBBA05. https://doi.org/10.35848/1347-4065/abef15 [8] Rassay S, Hakim F, Li C, Forgey C, Choudhary N, Tabrizian R (2021) A segmented‐target sputtering process for growth of sub‐50 nm ferroelectric scandium-aluminum-nitride films with composition and stress tuning. Phys Status Solidi (R) Rapid Res Lett 15(5):2100087. https://doi.org/10.1002/pssr.202100087 [9] Zhang Y, Zhu Q, Tian B, Duan C (2024) New-generation ferroelectric AlScN materials Nano-micro Lett 16(1):227. https://doi.org/10.1007/s40820-024-01441-1 [10] Wang D, Yang S, Liu J, Wang D, Mi Z (2024) Perspectives on nitride ferroelectric semiconductors: challenges and opportunities. Appl Phys Lett 124(15):150501. https://doi.org/10.1063/5.0206005 [11] Wang P, Wang D, Mondal S, Hu M, Liu J, Mi Z (2023) Dawn of nitride ferroelectric semiconductors: from materials to devices. Semicond Sci Technol 38(4):043002. https://doi.org/10.1088/1361-6641/acb80e [12] Qin H, He N, Han C, Zhang M, Wang Y, Hu R et al (2024) Perspectives of ferroelectric wurtzite AlScN: material characteristics, preparation, and applications in advanced memory devices. Nanomaterials 14(11):986. https://doi.org/10.3390/nano14110986 [13] Wang D, Zheng J, Musavigharavi P, Zhu W, Foucher AC, Trolier-McKinstry SE et al (2020) Ferroelectric switching in sub-20 nm aluminum scandium nitride thin films. IEEE Electron Device Lett 41(12):1774-1777. https://doi.org/10.1109/led.2020.3034576 [14] Wang D, Zheng J, Tang Z, Agati M, Gharavi PS, Liu X (2020) Ferroelectric C-axis textured aluminum scandium nitride thin films of 100 nm thickness. In: 2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF). IEEE pp. 1-4. https://doi.org/10.1109/ifcs-isaf41089.2020.9234910 [15] Yasuoka S, Shimizu T, Tateyama A, Uehara M, Yamada H, Akiyama M et al (2020) Effects of deposition conditions on the ferroelectric properties of (Al1-xScx)N thin films. J Appl Phys 128(11):114103. https://doi.org/10.1063/5.0015281 [16] Gund V, Davaji B, Lee H, Asadi M, Casamento J, Xing H et al (2021) Temperature-dependent lowering of coercive field in 300 nm sputtered ferroelectric Al0.70Sc0.30N. In: 2021 IEEE International Symposium on Applications of Ferroelectrics (ISAF). IEEE, pp. 1-3, https://doi.org/10.1109/ISAF51943.2021.9477328 [17] Gund V, Davaji B, Lee H, Casamento J, Xing HG, Jena D et al (2021) Towards realizing the low-coercive field operation of sputtered ferroelectric ScxAl1-xN. In: 2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers). IEEE, pp 1064-7 https://doi.org/10.1109/Transducers50396.2021.9495515 [18] Pirro M, Giribaldi G, Soukup BH, Zhao X, Michetti G, Zhu W et al (2021) Ferroelectric considerations on co-sputtered 30% AlScN with different DC+RF ratios. In: 2021 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFCS). IEEE, pp. 1-3. https://doi.org/10.1109/EFTF/IFCS52194.2021.9604316 [19] Tsai SL, Hoshii T, Wakabayashi H, Tsutsui K, Chung TK, Chang EY et al (2021) Room-temperature deposition of a poling-free ferroelectric AlScN film by reactive sputtering. Appl Phys Lett 118(8):082902. https://doi.org/10.1063/5.0035335 [20] Yasuoka S, Shimizu T, Tateyama A, Uehara M, Yamada H, Akiyama M et al (2021) Impact of deposition temperature on crystal structure and ferroelectric properties of (Al1-xScx)N films prepared by sputtering method. Phys Status Solidi (A) Appl Mater Sci 218(17):2100302, https://doi.org/10.1002/pssa.202100302 [21] Drury D, Yazawa K, Zakutayev A, Hanrahan B, Brennecka G (2022) High-temperature ferroelectric behavior of Al0.7Sc0.3N. Micromachines 13(6):887. https://doi.org/10.3390/mi13060887 [22] Nie R, Shao S, Luo Z, Kang X, Wu T (2022) Characterization of ferroelectric Al0.7Sc0.3N thin film on Pt and Mo electrodes. Micromachines 13(10):1629. https://doi.org/10.3390/mi13101629 [23] Pirro M, Zhao X, Herrera B, Simeoni P, Rinaldi M (2022) Effect of substrate-RF on sub-200 nm Al0.7Sc0.3N thin films. Micromachines 13(6):877. https://doi.org/10.3390/mi13060877 [24] Ryoo SK, Kim KD, Park HW, Lee YB, Lee SH, Lee IS et al (2022) Investigation of optimum deposition conditions of radio frequency reactive magnetron sputtering of Al0.7Sc0.3N film with thickness down to 20 nm. Adv Electron Mater 8(11):2200726. https://doi.org/10.1002/aelm.202200726 [25] Shibukawa R, Tsai SL, Hoshii T, Wakabayashi H, Tsutsui K, Kakushima K (2022) Influence of sputtering power on the switching and reliability of ferroelectric Al0.7Sc0.3N films. Jpn J Appl Phys 61(SH):SH1003. https://doi.org/10.35848/1347-4065/ac5db0 [26] Tsai SL, Hoshii T, Wakabayashi T, Tsutsui K, Chung TK, Chang EY et al (2022) Field cycling behavior and breakdown mechanism of ferroelectric Al0.78Sc0.22N films. Jpn J Appl Phys 61(SJ):SJ1005. https://doi.org/10.35848/1347-4065/ac54f6 [27] Wolff N, Islam MR, Kirste MR, Fichtner S, Lofink F, Zukauskaite A et al (2022) Al1-xScxN thin films at high temperatures: Sc-dependent instability and anomalous thermal expansion. Micromachines 13(8):1282. https://doi.org/10.3390/mi13081282 [28] Guido R, Lomenzo PD, Islam MR, Wolff MR, Gremmel M, Schönweger G et al (2023) Thermal stability of the ferroelectric properties in 100 nm-thick Al0.72Sc0.28N. ACS Appl Mater Interfaces 15(5):7030-7043. https://doi.org/10.1021/acsami.2c18313 [29] Islam MR, Schonweger G, Wolff N, Petraru A, Kohlstedt A, Fichtner S et al (2023) A comparative study of Pt/Al0.72Sc0.28N/Pt-based thin-film metal-ferroelectric-metal capacitors on GaN and Si substrates. ACS Appl Mater Interfaces 15(35):41606-41613. https://doi.org/10.1021/acsami.3c05305 [30] Li M, Lin H, Luo P, Hu K, Liu C, Chen L et al (2022) Texture evolution of ferroelectric AlScN films on metal under-layers. In: 2022 IEEE International Symposium on Applications of Ferroelectrics (ISAF). IEEE, pp. 1-3. https://doi.org/10.1109/ISAF51494.2022.9870108 [31] McMitchell SRC, Walke AM, Banerjee K, Mertens S, Piao X, Mao M et al (2023) Engineering strain and texture in ferroelectric scandium-doped aluminium nitride. ACS Appl Electron Mater 5(2):858-864. https://doi.org/10.1021/acsaelm.2c01421 [32] Wang P, Wang D, Vu NM, Chiang T, Heron JT, Mi Z (2021) Fully epitaxial ferroelectric ScAlN grown by molecular beam epitaxy. Appl Phys Lett 118(22):223504. https://doi.org/10.1063/5.0054539 [33] Wang P, Wang D, Wang B, Mohanty S, Diez S, Wu Y et al (2021) N-polar ScAlN and HEMTs grown by molecular beam epitaxy. Appl Phys Lett 119(8):082101. https://doi.org/10.1063/5.0055851 [34] Wang D, Wang P, Mondal S, Hu M, Wang D, Wu Y et al (2023) Thickness scaling down to 5 nm of ferroelectric ScAlN on CMOS compatible molybdenum grown by molecular beam epitaxy. Appl Phys Lett 122(5):052101. https://doi.org/10.1063/5.0136265 [35] Wang D, Wang P, Mondal S, Liu J, Hu M, He M et al (2023) Controlled ferroelectric switching in ultrawide bandgap AlN/ScAlN multilayers. Appl Phys Lett 123(10):103506. https://doi.org/10.1063/5.0160163 [36] Chen L, Wang Q, Liu C, Li M, Song W, Wang W et al (2024) Leakage mechanism and cycling behavior of ferroelectric Al0.7Sc0.3N. Materials 17(2):397. https://doi.org/10.3390/ma17020397 [37] Valasek J (1921) Piezo-electric and allied phenomena in Rochelle salt. Phys Rev 17(4):475. https://doi.org/10.1103/PhysRev.17.475 [38] Landau L (1936) The theory of phase transitions. Nature 138(3498):840-841. https://doi.org/10.1038/138840a0 [39] Badapanda T, Sarangi S, Behera B, Sahoo PK, Anwar S, Sinha TP et al (2014) Structural refinement, optical and ferroelectric properties of microcrystalline Ba(Zr0.05Ti0.95)O3 perovskite. Curr Appl Phys 14(5):708-715 https://doi.org/10.1016/j.cap.2014.02.015 [40] Xu Q, Yang D, Lv J, Sun Y, Zhang L (2018) Perovskite solar absorbers: materials by design. Small Methods 2(5):1700316. https://doi.org/10.1002/smtd.201700316 [41] Lee ML, Chen SM, Jhang JJ, Lu LS, Yang ST, Chiu PE (2022) Fabrication and characterizations of PbZrxTi1-xO3 (PZT) ultrasonic sensing chips. IEEE Access 10:32453-32460. https://doi.org/10.1109/ACCESS.2022.3158740 [42] Koo JM, Seo BS, Kim S, Shin S, Lee JH, Baik H (2006) Fabrication of 3D trench PZT capacitors for 256Mbit FRAM device application. In: IEEE International Electron Devices Meeting. IEEE, 4:343. https://doi.org/10.1109/IEDM.2005.1609345 [43] Böscke T, Müller J, Bräuhaus D, Schröder U, Böttger U (2011) Ferroelectricity in hafnium oxide thin films. Appl Phys Lett 99(10):102903. https://doi.org/10.1063/1.3634052 [44] Dubois MA, Muralt P (1999) Properties of aluminum nitride thin films for piezoelectric transducers and microwave filter applications. Appl Phys Lett 74(20):3032-3034. https://doi.org/10.1063/1.124055 [45] Pinto RMR, Gund V, Calaza C, Nagaraja KK, Vinayakumar KB (2022) Piezoelectric aluminum nitride thin-films: a review of wet and dry etching techniques. Microelectron Eng 257:111753. https://doi.org/10.1016/j.mee.2022.111753 [46] Trolier-McKinstry S, Zhang S, Bell AJ, Tan X (2018) High-performance piezoelectric crystals, ceramics, and films. Annu Rev Mater Res 48(1):191-217. https://doi.org/10.1146/annurev-matsci-070616-124023 [47] Akiyama M, Kamohara T, Kano K, Teshigahara A, Takeuchi Y, Kawahara N (2009) Enhancement of piezoelectric response in scandium aluminum nitride alloy thin films prepared by dual reactive cosputtering. Adv Mater 21(5):593-596. https://doi.org/10.1002/adma.200802611 [48] Zamora I, Ledesma E, Uranga A, Barniol N (2022) Phased array based on AlScN piezoelectric micromachined ultrasound transducers monolithically integrated on CMOS. IEEE Electron Device Lett 43(7):1113-1116. https://doi.org/10.1109/led.2022.3175323 [49] Noor AAM, Oskar ZO, Nolan M (2019) Ferroelectricity and large piezoelectric response of AlN/ScN superlattice. ACS Appl Mater Interfaces 11(22):20482-20490. https://doi.org/10.1021/acsami.8b22602 [50] Ji Z, Zhou J, Guo Y, Xia Y, Abkar A, Liang D et al (2024) Achieving consistency of flexible surface acoustic wave sensors with artificial intelligence. Microsyst Nanoeng 10(1):94. https://doi.org/10.1038/s41378-024-00727-z [51] Leone S, Ligl J, Manz C, Kirste L, Fuchs T, Menner H et al (2019) Metal‐organic chemical vapor deposition of aluminum scandium nitride. Phys Status Solidi (R) Rapid Res Lett 14(1):1900535. https://doi.org/10.1002/pssr.201900535 [52] Liu X, Wang D, Kim KH, Katti K, Zheng J, Musavigharavi P et al (2021) Post-CMOS compatible aluminum scandium nitride/2D channel ferroelectric field-effect-transistor memory. Nano Lett 21(9):3753-3761. https://doi.org/10.1021/acs.nanolett.0c05051 [53] Liu X, Ting J, He Y, Fiagbenu MMA, Zheng J, Wang D et al (2022) Reconfigurable compute-in-memory on field-programmable ferroelectric diodes. Nano Lett 22(18):7690-7698. https://doi.org/10.1021/acs.nanolett.2c03169 [54] Casamento J, Nomoto K, Nguyen TS, Lee H, Savant C, Li L et al (2022) FerroHEMTs: high-current and high-speed all-epitaxial AlScN/GaN ferroelectric transistors. In: 2022 International Electron Devices Meeting (IEDM). IEEE, pp. 11.1.1-11.1.4. https://doi.org/10.1109/IEDM45625.2022.10019485 [55] Wang D, Wang P, Mondal S, Xiao Y, Hu M, Mi Z (2022) Impact of dislocation density on the ferroelectric properties of ScAlN grown by molecular beam epitaxy. Appl Phys Lett 121(4):042108. https://doi.org/10.1063/5.0099913 [56] Ding Y, Hou X, Jin T, Wang Y, Lian X, Liu Y et al (2023) Ultrathin Pt and Mo films on Al1-xScxN: an interface investigation. Appl Surf Sci 637(15):157921. https://doi.org/10.1016/j.apsusc.2023.157921 [57] Wall JM, Yan F (2023) Sputtering process of ScxAl1-xN thin films for ferroelectric applications. Coatings 13(1):54. https://doi.org/10.3390/coatings13010054 [58] Fichtner S, Lofink F, Wagner B (2020) Ferroelectricity in AlScN: switching, imprint and sub-150 nm films. In: 2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF) IEEE, pp. 1-4. https://doi.org/10.1109/IFCS-ISAF41089.2020.9234883 [59] Dreyer C, Janotti A, Walle CG, Vanderbilt D (2016) Correct implementation of polarization constants in wurtzite materials and impact on III-nitrides. Phys Rev X 6(2):021038. https://doi.org/10.1103/PhysRevX.6.021038 [60] Kataoka J, Tsai SL, Hoshii T, Wakabayashi H, Tsutsui K, Kakushima K et al (2021) A possible origin of the large leakage current in ferroelectric Al1-xScxN films. Jpn J Appl Phys 60(3):030907. https://doi.org/10.35848/1347-4065/abe644 [61] Yasuoka S, Mizutani R, Ota R, Shiraishi S, Shimizu T, Uehara M et al (2022) Tunable ferroelectric properties in Wurtzite (Al0.8Sc0.2)N via crystal anisotropy. ACS Appl Electron Mater 4(11):5165-5170. https://doi.org/10.1021/acsaelm.2c00999 [62] Yang W, Chen L, Li M, Liu F, Liu X, Liu C et al (2023) Stress effect on the leakage current distribution of ferroelectric Al0.7Sc0.3N across the wafer. Appl Phys Lett 123(13):132903. https://doi.org/10.1063/5.0159599 [63] Schönweger G, Wolff N, Islam MR, Gremmel M, Petraru A, Kienle L et al (2023) In-Grain ferroelectric switching in sub-5 nm thin Al0.74Sc0.26N Films at 1 V. Adv Sci 10(25):2302296. https://doi.org/10.1002/advs.202302296 [64] Wolff N, Fichtner S, Haas B, Islam MR, Niekiel F, Kessel M et al (2021) Atomic scale confirmation of ferroelectric polarization inversion in wurtzite-type AlScN. J Appl Phys 129(3):034103. https://doi.org/10.1063/5.0033205 [65] Wang P, Wang D, Mondal S, Xiao Y, Mi Z (2022) Ferroelectric N-polar ScAlN/GaN heterostructures grown by molecular beam epitaxy. Appl Phys Lett 121:023501. https://doi.org/10.1063/5.0097117 [66] Wang P, Wang D, Mondal S, Mi Z (2022) Ferroelectric N-polar ScAlN/GaN heterostructures grown by molecular beam epitaxy. Appl Phys Lett 121(2):023501. https://doi.org/10.1063/5.0097117 [67] Wang D, Wang D, Zhou P, Hu M, Liu J, Mondal S et al (2023) On the surface oxidation and band alignment of ferroelectric Sc0.18Al0.82N/GaN heterostructures. Appl Surf Sci 628(15):157337. https://doi.org/10.1016/j.apsusc.2023.157337 [68] Manz C, Leone S, Kirste L, Ligl J, Frei K, Fuchs T et al (2021) Improved AlScN/GaN heterostructures grown by metal-organic chemical vapor deposition. Semicond Sci Technol 36(3):034003. https://doi.org/10.1088/1361-6641/abd924 |