| [1] Cai Y, Yang B, Ji J, Sun F, Zhao Y, Yu L et al (2022) A universal tandem device of DC-driven electrochromism and AC-driven electroluminescence for multi-functional smart windows. Adv Mater Technol 8:2201682. https://doi.org/10.1002/admt.202201682 [2] Granqvist CG (2014) Electrochromics for smart windows: Oxide-based thin films and devices. Thin Solid Films 564:1-38. https://doi.org/10.1016/j.tsf.2014.02.002
 [3] Balendhran S, Walia S, Nili H, Ou JZ, Zhuiykov S, Kaner RB et al (2013) Two‐dimensional molybdenum trioxide and dichalcogenides. Adv Func Mater 23:3952-3970. https://doi.org/10.1002/adfm.201300125
 [4] Sharma R, Sharma M, Goswamy J (2022) Synthesis and characterization of MoS2/WO3 nanocomposite for electrochromic device application. Int J Energy Res 46:22176-22187. https://doi.org/10.1002/er.8726
 [5] Chen X, Zhang H, Li W, Xiao Y, Ge Z, Li Y et al (2022) Electro-optical performance of all solid state electrochromic devices with NaF electrolytes. Mater Lett 324:132692. https://doi.org/10.1016/j.matlet.2022.132692
 [6] Zohrevand N, Madrakian T, Ghoorchian A, Afkhami A (2022) Simple electrochromic sensor for the determination of amines based on the proton sensitivity of polyaniline film. Electrochim Acta 427:140856. https://doi.org/10.1016/j.electacta.2022.140856
 [7] Bi S, Jin W, Han X, Cao X, He Z, Asare-Yeboah K et al (2022) Ultra-fast-responsivity with sharp contrast integrated flexible piezo electrochromic based tactile sensing display. Nano Energy 102:107629. https://doi.org/10.1016/j.nanoen.2022.107629
 [8] Xiao M, Wei S, Chen J, Tian J, Brooks III CL, Marsh ENG et al (2019) Molecular mechanisms of interactions between monolayered transition metal dichalcogenides and biological molecules. J Am Chem Soc 141:9980-9988. https://doi.org/10.1021/jacs.9b03641
 [9] Rao C, Gopalakrishnan K, Maitra U (2015) Comparative study of potential applications of graphene, MoS2, and other two-dimensional materials in energy devices, sensors, and related areas. ACS Appl Mater Interfaces 7:7809-7832. https://doi.org/10.1021/am509096x
 [10] Li Y, Yang B, Xu S, Huang B, Duan W (2022) Emergent phenomena in magnetic two-dimensional materials and van der Waals heterostructures. ACS Appl Electron Mater 4: 3278-3302. https://doi.org/10.1021/acsaelm.2c00419
 [11] Mphuthi N, Sikhwivhilu L, Ray SS (2022) Functionalization of 2D MoS2 nanosheets with various metal and metal oxide nanostructures: their properties and application in electrochemical sensors. Biosensors 12:386. https://doi.org/10.3390/bios12060386
 [12] Li T, Shang D, Gao S, Wang B, Kong H, Yang G et al (2022) Two-dimensional material-based electrochemical sensors/biosensors for food safety and biomolecular detection. Biosensors 12:314. https://doi.org/10.3390/bios12050314
 [13] Kalia S, Rana DS, Thakur N, Singh D, Kumar R, Singh RK et al. (2022) Two-dimensional layered molybdenum disulfide (MoS2)-reduced graphene oxide (rGO) heterostructures modified with Fe3O4 for electrochemical sensing of epinephrine. Mater Chem Phys 287: 126274. https://doi.org/10.1016/j.matchemphys.2022.126274
 [14] Jiao L, Xu W, Wu Y, Yan H, Gu W, Du D et al (2021) Single-atom catalysts boost signal amplification for biosensing. Chem Soc Rev 50:750-765. https://doi.org/10.1039/D0CS00367K
 [15] Zribi R, Foti A, Donato MG, Gucciardi PG, Neri G (2022) Electrochemical and sensing properties of 2D-MoS2 nanosheets produced via liquid cascade centrifugation. Electrochim Acta 436:141433. https://doi.org/10.1016/j.electacta.2022.141433
 [16] Tsuboi A, Nakamura K, Kobayashi N (2014) Multicolor electrochromism showing three primary color states (cyan-magenta-yellow) based on size-and shape-controlled silver nanoparticles. Chem Mater 26:6477-6485. https://doi.org/10.1021/cm5039039
 [17] Barile CJ, Slotcavage DJ, Hou J, Strand MT, Hernandez TS, McGehee MD (2017) Dynamic windows with neutral color, high contrast, and excellent durability using reversible metal electrodeposition. Joule 1:133-145. https://doi.org/10.1016/j.joule.2017.06.001
 [18] Eren E, Karaca GY, Koc U, Oksuz L, Oksuz AU (2017) Electrochromic characteristics of radio frequency plasma sputtered WO3 thin films onto flexible polyethylene terephthalate substrates. Thin Solid Films 634:40-50. https://doi.org/10.1016/j.tsf.2017.05.009
 [19] Akkurt N, Pat S, Mohammadigharehbagh R, Olkun A, Korkmaz Ş (2020) Electrochromic properties of graphene doped Nb2O5 thin film. ECS J Solid State Sci Technol 9:125004. https://doi.org/10.1149/2162-8777/abd079
 [20] Xiong S, Li Z, Gong M, Wang X, Fu J, Shi Y et al (2014) Covalently bonded polyaniline and para-phenylenediamine functionalized graphene oxide: How the conductive two-dimensional nanostructure influences the electrochromic behaviors of polyaniline. Electrochim Acta 138:101-108. https://doi.org/10.1016/j.electacta.2014.06.108
 [21] Friend RH, Yoffe AD (1987) Electronic properties of intercalation complexes of the transition metal dichalcogenides. Adv Phys 36:1-94. https://doi.org/10.1080/00018738700101951
 [22] Iqbal MA, Malik M, Shahid W, Ahmad W, Min-Dianey KA, Pham PV et al (2022) Plasmonic 2D materials: Overview, advancements, future prospects and functional applications. In: Pham PV (ed) 21st Century Nanostructured Materials - Physics, Chemistry, Classification, and Emerging Applications in Industry, Biomedicine, and Agriculture. IntechOpen, London. https://doi.org/10.5772/intechopen.101580
 [23] Choi W, Choudhary N, Han GH, Park J, Akinwande D, Lee YH (2017) Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater Today 20:116-130. https://doi.org/10.1016/j.mattod.2016.10.002
 [24] Wang Z, Zhu W, Qiu Y, Yi X, von dem Bussche A, Kane A et al (2016) Biological and environmental interactions of emerging two-dimensional nanomaterials. Chem Soc Rev 45:1750-1780. https://doi.org/10.1039/c5cs00914f
 [25] Singh NB, Hua SuC, Arnold B, Choa F-S, Sova S, Cooper C (2017) Multifunctional 2D-materials: gallium selenide. Mater Today Proc 4:5471-5477. https://doi.org/10.1016/j.matpr.2017.06.002
 [26] Zhou J, Shen L, Costa MD, Persson KA, Ong SP, Huck P et al (2019) 2DMatPedia, an open computational database of two-dimensional materials from top-down and bottom-up approaches. Sci Data 6:86. https://doi.org/10.1038/s41597-019-0097-3
 [27] Li M, Wu Z, Tian Y, Pan F, Gould T, Zhang S (2022) Nanoarchitectonics of two‐dimensional electrochromic materials: achievements and future challenges. Adv Mater Technol 4:2200917. https://doi.org/10.1002/admt.202200917
 [28] Gu C, Jia A-B, Zhang Y-M, Zhang SX-A (2022) Emerging electrochromic materials and devices for future displays. Chem Rev 122: 14679-14721. https://doi.org/10.1021/acs.chemrev.1c01055
 [29] Tang X, Chen G, Li Z, Li H, Zhang Z, Zhang Q et al (2020) Structure evolution of electrochromic devices from 'face-to-face' to 'shoulder-by-shoulder'. J Mater Chem C 8:11042-11051. https://doi.org/10.1039/d0tc01132k
 [30] Parvez K, Yang S, Feng X, Müllen K (2015) Exfoliation of graphene via wet chemical routes. Synth Met 210:123-132. https://doi.org/10.1016/j.synthmet.2015.07.014
 [31] Xu X, Zhang Z, Qiu L, Zhuang J, Zhang L, Wang H et al (2016) Ultrafast growth of single-crystal graphene assisted by a continuous oxygen supply. Nat Nanotechnol 11:930-935. https://doi.org/10.1038/nnano.2016.132
 [32] Niu L, Coleman JN, Zhang H, Shin H, Chhowalla M, Zheng Z (2016) Production of two‐dimensional nanomaterials via liquid‐based direct exfoliation. Small 12:272-293. https://doi.org/10.1002/smll.201502207
 [33] Yi M, Shen Z (2015) A review on mechanical exfoliation for the scalable production of graphene. J Mater Chem A 3:11700-11715. https://doi.org/10.1039/C5TA00252D
 [34] Pellitero MA, del Campo FJ (2019) Electrochromic sensors: Innovative devices enabled by spectroelectrochemical methods. Curr Opin Electrochem 15:66-72. https://doi.org/10.1016/j.coelec.2019.03.004
 [35] Xiong J, Cui P, Chen X, Wang J, Parida K, Lin M-F et al (2018) Skin-touch-actuated textile-based triboelectric nanogenerator with black phosphorus for durable biomechanical energy harvesting. Nat Commun 9:4280. https://doi.org/10.1038/s41467-018-06759-0
 [36] Gao J, Li B, Tan J, Chow P, Lu T-M, Koratkar N (2016) Aging of transition metal dichalcogenide monolayers. ACS Nano 10:2628-2635. https://doi.org/10.1021/acsnano.5b07677
 [37] Huang W, Zhang Y, Song M, Wang B, Hou H, Hu X et al (2022) Encapsulation strategies on 2D materials for field effect transistors and photodetectors. Chin Chem Lett 33:2281-2290. https://doi.org/10.1016/j.cclet.2021.08.086
 [38] Kandpal S, Ghosh T, Rani C, Rani S, Pathak DK, Tanwar M et al (2022) MoS2 nano-flower incorporation for improving organic-organic solid state electrochromic device performance. Sol Energy Mater Sol Cells 236:111502. https://doi.org/10.1016/j.solmat.2021.111502
 [39] Chen WH, Li FW, Liou GS (2019) Novel stretchable ambipolar electrochromic devices based on highly transparent AgNW/PDMS hybrid electrodes. Adv Opt Mater 7:1900632. https://doi.org/10.1002/adom.201900632
 [40] Polat EO, Balcı O, Kocabas C (2014) Graphene based flexible electrochromic devices. Sci Rep 4:6484. https://doi.org/10.1038/srep06484
 [41] Wang Y, Niu H, Lu Q, Zhang W, Qiao X, Niu H et al (2020) From aerospace to screen: Multifunctional poly(benzoxazine)s based on different triarylamines for electrochromic, explosive detection and resistance memory devices. Spectrochim Acta Part A 225:117524. https://doi.org/10.1016/j.saa.2019.117524
 [42] Chen F, Fu X, Zhang J, Wan X (2013) Near-infrared and multicolored electrochromism of solution processable triphenylamine-anthraquinone imide hybrid systems. Electrochim Acta 99:211-218. https://doi.org/10.1016/j.electacta.2013.03.067
 [43] Rai V, Singh RS, Blackwood DJ, Zhili D (2020) A review on recent advances in electrochromic devices: a material approach. Adv Eng Mater 22:2000082. https://doi.org/10.1002/adem.202000082
 [44] Rakibuddin M, Kim H (2017) Fabrication of MoS2/WO3 nanocomposite films for enhanced electro-chromic performance. New J Chem 41:15327. https://doi.org/10.1039/c7nj03011h
 [45] Yu S, Wu X, Wang Y, Guo X, Tong L (2017) 2D materials for optical modulation: challenges and opportunities. Adv Mater 29:1606128. https://doi.org/10.1002/adma.201606128
 [46] Ahmad K, Shinde MA, Song G, Kim H (2021) Design and fabrication of MoSe2/WO3 thin films for the construction of electrochromic devices on indium tin oxide based glass and flexible substrates. Ceram Int 47:34297-34306. https://doi.org/10.1016/j.ceramint.2021.08.340
 [47] Gadgil B, Damlin P, Heinonen M, Kvarnström C (2015) A facile one step electrostatically driven electrocodeposition of polyviologen-reduced graphene oxide nanocomposite films for enhanced electrochromic performance. Carbon 89:53-62. https://doi.org/10.1016/j.carbon.2015.03.020
 [48] Novak TG, Kim J, Tiwari AP, Kim J, Lee S, Lee J et al (2020) 2D MoO3 nanosheets synthesized by exfoliation and oxidation of MoS2 for high contrast and fast response time electrochromic devices. ACS Sustainable Chem Eng 8:11276-11282. https://doi.org/10.1021/acssuschemeng.0c03191
 [49] Rakibuddin M, Shinde MA, Kim H (2020) Facile sol-gel fabrication of MoS2 bulk, flake and quantum dot for electrochromic device and their enhanced performance with WO3. Electrochim Acta 349:136403. https://doi.org/10.1016/j.electacta.2020.136403
 [50] Xue J, Xu H, Wang S, Hao T, Yang Y, Zhang X et al (2021) Design and synthesis of 2D rGO/NiO heterostructure composites for high-performance electrochromic energy storage. Appl Surf Sci 565:150512. https://doi.org/10.1016/j.apsusc.2021.150512
 [51] Zhao S, Huang W, Guan Z, Jin B, Xiao D (2019) A novel bis (dihydroxypropyl) viologen-based all-in-one electrochromic device with high cycling stability and coloration efficiency. Electrochim Acta 298:533-540. https://doi.org/10.1016/j.electacta.2018.12.135
 [52] Eh ALS, Tan AWM, Cheng X, Magdassi S, Lee PS (2018) Recent advances in flexible electrochromic devices: prerequisites, challenges, and prospects. Energy Technology 6:33-45. https://doi.org/10.1002/ente.201700705
 [53] Valurouthu G, Maleski K, Kurra N, Han M, Hantanasirisakul K, Sarycheva A et al (2020) Tunable electrochromic behavior of titanium-based MXenes. Nanoscale 12:14204-14212. https://doi.org/10.1039/D0NR02673E
 [54] Yeon SY, Seo M, Kim Y, Hong H, Chung TD (2022) Paper-based electrochromic glucose sensor with polyaniline on indium tin oxide nanoparticle layer as the optical readout. Biosens Bioelectron 203:114002. https://doi.org/10.1016/j.bios.2022.114002
 [55] Yang P, Sun P, Mai W (2016) Electrochromic energy storage devices. Mater Today 19:394-402. https://doi.org/10.1016/j.mattod.2015.11.007
 [56] Xu L, Li D, Ramadan S, Li Y, Klein N (2020) Facile biosensors for rapid detection of COVID-19. Biosens Bioelectron 170:112673. https://doi.org/10.1016/j.bios.2020.112673
 [57] Porcel-Valenzuela M, Ballesta-Claver J, de Orbe-Payá I, Montilla F, Capitán-Vallvey LF (2015) Disposable electrochromic polyaniline sensor based on a redox response using a conventional camera: A first approach to handheld analysis. J Electroanal Chem 738:162-169. https://doi.org/10.1016/j.jelechem.2014.12.002
 [58] Yun TY, Li X, Bae J, Kim SH, Moon HC (2019) Non-volatile, Li-doped ion gel electrolytes for flexible WO3-based electrochromic devices. Mater Des 162:45-51. https://doi.org/10.1016/j.matdes.2018.11.016
 [59] Eggins BR (2002) Chemical sensors and biosensors. John Wiley & Sons, Chichester.
 [60] Palenzuela J, Vinuales A, Odriozola I, Cabanero G, Grande HJ, Ruiz V (2014) Flexible viologen electrochromic devices with low operational voltages using reduced graphene oxide electrodes. ACS Appl Mater Interfaces 6:14562-14567. https://doi.org/10.1021/am503869b
 [61] Kuznetsov B, Shumakovich G, Koroleva O, Yaropolov A (2001) On applicability of laccase as label in the mediated and mediatorless electroimmunoassay: effect of distance on the direct electron transfer between laccase and electrode. Biosens Bioelectron 16:73-84. https://doi.org/10.1016/S0956-5663(00)00135-4
 [62] Pellitero MA, Guimera A, Kitsara M, Villa R, Rubio C, Lakard B et al (2017) Quantitative self-powered electrochromic biosensors. Chem Sci 8:1995-2002. https://doi.org/10.1039/c6sc04469g
 [63] Ghindilis AL, Atanasov P, Wilkins E (1997) Enzyme‐catalyzed direct electron transfer: Fundamentals and analytical applications. Electroanalysis 9:661-674. https://doi.org/10.1002/elan.1140090902
 [64] Zhang Y, Li X, Li D, Wei Q (2020) A laccase based biosensor on AuNPs-MoS2 modified glassy carbon electrode for catechol detection. Colloids Surf, B 186:110683. https://doi.org/10.1016/j.colsurfb.2019.110683
 [65] Fang A, Ng HT, Li SFY (2003) A high-performance glucose biosensor based on monomolecular layer of glucose oxidase covalently immobilised on indium-tin oxide surface. Biosens Bioelectron 19:43-49. https://doi.org/10.1016/S0956-5663(03)00133-7
 [66] Valiūnienė A, Virbickas P, Medvikytė G, Ramanavičius A (2020) Urea biosensor based on electrochromic properties of Prussian blue. Electroanalysis 32:503-509. https://doi.org/10.1002/elan.201900556
 [67] De Matteis V, Cannavale A, Blasi L, Quarta A, Gigli G (2016) Chromogenic device for cystic fibrosis precocious diagnosis: A “point of care” tool for sweat test. Sens Actuators, B Chem 225:474-480. https://doi.org/10.1016/j.snb.2015.11.080
 [68] Marques AC, Santos L, Costa MN, Dantas JM, Duarte P, Gonçalves A et al (2015) Office paper platform for bioelectrochromic detection of electrochemically active bacteria using tungsten trioxide nanoprobes. Sci Rep 5:9910. https://doi.org/10.1038/srep09910
 [69] Wang S, Liu Y, Zhu A, Tian Y (2023) In vivo electrochemical biosensors: Recent advances in molecular design, electrode materials, and electrochemical devices. Anal Chem 95:388-406. https://doi.org/10.1021/acs.analchem.2c04541
 [70] Jha RK, Bhat N (2020) Recent progress in chemiresistive gas sensing technology based on molybdenum and tungsten chalcogenide nanostructures. Adv Mater Interfaces 7:1901992. https://doi.org/10.1002/admi.201901992
 [71] Huang T-Y, Kung C-W, Wei H-Y, Boopathi KM, Chu C-W, Ho K-C (2014) A high performance electrochemical sensor for acetaminophen based on a rGO-PEDOT nanotube composite modified electrode. J Mater Chem A 2:7229-7237. https://doi.org/10.1039/c4ta00309h
 [72] Ahmad K, Kim HJMSiSP (2022) Synthesis of MoS2/WO3 hybrid composite for hydrazine sensing applications. Mater Sci Semicond Process 148:106803. https://doi.org/10.1016/j.mssp.2022.106803
 [73] Haldorai Y, Kim JY, Vilian AE, Heo NS, Huh YS, Han Y-K et al (2016) An enzyme-free electrochemical sensor based on reduced graphene oxide/Co3O4 nanospindle composite for sensitive detection of nitrite. Sens Actuators B 227:92-99. https://doi.org/10.1016/j.snb.2015.12.032
 [74] Sharma AK, Pandey S, Sharma KH, Nerthigan Y, Khan MS, Hang D-R et al (2018) Two dimensional α-MoO3-x nanoflakes as bare eye probe for hydrogen peroxide in biological fluids. Anal Chim Acta 1015:58-65. https://doi.org/10.1016/j.aca.2018.01.057
 [75] Nasir MZM, Mayorga-Martinez CC, Sofer Zk, Pumera M (2017) Two-dimensional 1T-phase transition metal dichalcogenides as nanocarriers to enhance and stabilize enzyme activity for electrochemical pesticide detection. ACS nano 11:5774-5784. https://doi.org/10.1021/acsnano.7b01364
 [76] Parra-Alfambra AM, Casero E, Vázquez L, Quintana C, del Pozo M, Petit-Domínguez MD (2018) MoS2 nanosheets for improving analytical performance of lactate biosensors. Sens Actuators, B Chem 274:310-317. https://doi.org/10.1016/j.snb.2018.07.124
 [77] Pathania PK, Saini JK, Vij S, Tewari R, Sabherwal P, Rishi P et al (2018) Aptamer functionalized MoS2-rGO nanocomposite based biosensor for the detection of Vi antigen. Biosens Bioelectron 122:121-126. https://doi.org/10.1016/j.bios.2018.09.015
 [78] Lee J, Dak P, Lee Y, Park H, Choi W, Alam MA et al (2014) Two-dimensional layered MoS2 biosensors enable highly sensitive detection of biomolecules. Sci Rep 4:7532. https://doi.org/10.1038/srep07352
 [79] Li J, Yan L, Tang X, Feng H, Hu D, Zha F (2016) Robust superhydrophobic fabric bag filled with polyurethane sponges used for vacuum‐assisted continuous and ultrafast absorption and collection of oils from water. Adv Mater Interfaces 3:1500770. https://doi.org/10.1002/admi.201500770
 [80] Huang K-J, Liu Y-J, Wang H-B, Gan T, Liu Y-M, Wang L-L (2014) Signal amplification for electrochemical DNA biosensor based on two-dimensional graphene analogue tungsten sulfide-graphene composites and gold nanoparticles. Sens Actuators B 191:828-836. https://doi.org/10.1016/j.snb.2013.10.072
 [81] Shuai H-L, Huang K-J, Chen Y-X (2016) A layered tungsten disulfide/acetylene black composite based DNA biosensing platform coupled with hybridization chain reaction for signal amplification. J Mater Chem B 4:1186-1196. https://doi.org/10.1039/C5TB02214B
 [82] Hu Y, Huang Y, Tan C, Zhang X, Lu Q, Sindoro M et al (2017) Two-dimensional transition metal dichalcogenide nanomaterials for biosensing applications. Materials Chemistry Frontiers 1:24-36. https://doi.org/10.1039/C6QM00195E
 [83] Fan H, Wei W, Hou C, Zhang Q, Li Y, Li K et al (2023) Wearable electrochromic materials and devices: from visible to infrared modulation. J Mater Chem C 11:7183-7210. https://doi.org/10.1039/D3TC01142A
 [84] Köç Bakacak P, Kovalska E, Tüzemen S (2024) Graphene for switchable flexible smart windows application. Opt Mater 151:115302. https://doi.org/10.1016/j.optmat.2024.115302
 [85] Liu L, Lenferink EJ, Wei G, Stanev TK, Speiser N, Stern NP (2019) Electrical control of circular photogalvanic spin-valley photocurrent in a monolayer semiconductor. ACS Appl Mater Interfaces 11:3334-3341. https://doi.org/10.1021/acsami.8b17476
 [86] Li R, Li Y, Tian H, Liao P, Wang H, Zhang S et al (2020) Valley polarization in superacid-treated monolayer MoS2. ACS Appl Electron Mater 2:1981-1988. https://doi.org/10.1021/acsaelm.0c00277
 [87] Ma D, Wang J, Wei H, Guo Z (2018) Multifunctional Nanocomposites for Energy and Environmental Applications. Wiley-VCH, Weinheim.
 [88] Maggini L, Ferreira RR (2021) 2D material hybrid heterostructures: achievements and challenges towards high throughput fabrication. J Mater Chem C 9:15721-15734. https://doi.org/10.1039/D1TC04253J
 [89] Shanmugam V, Mensah RA, Babu K, Gawusu S, Chanda A, Tu Y et al (2022) A review of the synthesis, properties, and applications of 2D materials. Part Part Syst Char 39:2200031. https://doi.org/10.1002/ppsc.202200031
 |