
Moore and More ›› 2025, Vol. 1 ›› Issue (2): 147-170.DOI: 10.1007/s44275-024-00009-w
• REVIEWS • 上一篇
Shuo Ke1,2, Yixin Zhu1,2, Chuanyu Fu1,2, Huiwu Mao1,2, Kailu Shi2, Lesheng Qiao2, Qing Wan1
收稿日期:2024-05-09
									
				
											修回日期:2024-07-09
									
				
											接受日期:2024-07-15
									
				
											出版日期:2024-09-29
									
				
											发布日期:2024-09-29
									
			通讯作者:
					Qing Wan,E-mail:qing-wan@ylab.ac.cn
							基金资助:Shuo Ke1,2, Yixin Zhu1,2, Chuanyu Fu1,2, Huiwu Mao1,2, Kailu Shi2, Lesheng Qiao2, Qing Wan1
Received:2024-05-09
									
				
											Revised:2024-07-09
									
				
											Accepted:2024-07-15
									
				
											Online:2024-09-29
									
				
											Published:2024-09-29
									
			Contact:
					Qing Wan,E-mail:qing-wan@ylab.ac.cn   
							Supported by:摘要: Emulating brain functionality with neuromorphic devices is an emerging field of research. It is extensively considered as the first step to overcome the limitations of conventional von Neumann systems and build artificial intelligent systems. Currently, most neuromorphic transistors are manufactured on rigid substrates, which are difficult to bend and cannot closely fit soft human skin, limiting their appliction scope. The emergence and evolution of flexible electronic devices address a plethora of application and scenario demands. Particularly, the introduction of flexible neuromorphic transistors injects fresh vitality into neuromorphic computing and perception, symbolizing a significant step towards overcoming the limitations of conventional computational models and fostering the development of more intelligent wearable devices. Herein, the recent developments in felxible neuromorphic transistors are summarized and their applications in neuromorphic computing and artificial perception systems are highlighted. The future prospects and challenges of felxible neuromorphic transistors are also discussed. We believe developments in felxible neuromorphic transistors will shed light on future advances in wearable artificial intelligent systems, humanoid robotics and neural repair technology.
Shuo Ke, Yixin Zhu, Chuanyu Fu, Huiwu Mao, Kailu Shi, Lesheng Qiao, Qing Wan. Flexible neuromorphic transistors for neuromorphic computing and perception application[J]. Moore and More, 2025, 1(2): 147-170.
Shuo Ke, Yixin Zhu, Chuanyu Fu, Huiwu Mao, Kailu Shi, Lesheng Qiao, Qing Wan. Flexible neuromorphic transistors for neuromorphic computing and perception application[J]. Moore and More, 2025, 1(2): 147-170.
| [1] Thompson SE, Parthasarathy S (2006) Moore’s Law: the future of Si microelectronics. Mater Today 9:20-25. https://doi.org/10.1016/s1369-7021(06)71539-5 [2] Wu D, Liu X, Hebert S, Gentzsch W, Terpenny J (2017) Democratizing digital design and manufacturing using high performance cloud computing: Performance evaluation and benchmarking. J Manuf Syst 43:316-326. https://doi.org/10.1016/j.jmsy.2016.09.005 [3] Merolla P, Arthur J, Alvarez-Icaza R, Cassidy A, Sawada J, Akopyan F et al (2014) A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345:668-673. https://doi.org/10.1126/science.1254642 [4] Wang CY, Wang C, Meng F, Wang P, Wang S, Liang SJ et al (2019) 2D layered materials for memristive and neuromorphic applications. Adv Electron Mater 6:1901107. https://doi.org/10.1002/aelm.201901107 [5] Zanotti T, Puglisi FM, Pavan P (2020) Smart logic-in-memory architecture for low-power non-von neumann computing. IEEE J Electron Devices Soc 8:757-764. https://doi.org/10.1109/jeds.2020.2987402 [6] Theis T, Wong H (2017) The end of Moore’s Law: a new beginning for information technology. Comput Sci Eng 19:41-50. https://doi.org/10.1109/MCSE.2017.29 [7] Zidan MA, Strachan JP, Lu WD (2018) The future of electronics based on memristive systems. Nat Electron 1:22-29. https://doi.org/10.1038/s41928-017-0006-8 [8] Zhu Y, Zhu Y, Mao H, He Y, Jiang S, Zhu L et al (2021) Recent advances in emerging neuromorphic computing and perception devices. J Phys D Appl Phys 55:053002. https://doi.org/10.1088/1361-6463/ac2868 [9] Wang Y, Yin L, Huang W, Li Y, Huang S, Zhu Y et al (2020) Optoelectronic synaptic devices for neuromorphic computing. Adv Intell Syst 3:2000099. https://doi.org/10.1002/aisy.202000099 [10] Leiserson CE, Thompson NC, Emer JS, Kuszmaul BC, Lampson BW, Sanchez D et al (2020) There’s plenty of room at the top: What will drive computer performance after Moore’s Law? Science 368:1079. https://doi.org/10.1126/science.aam9744 [11] Abbott L, Regehr W (2004) Synaptic computation. Nature 431:796-803. https://doi.org/10.1038/nature03010 [12] Wang Z, Joshi S, Savel’ev SE, Jiang H, Midya R, Lin P et al (2016) Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat Mater. 16:101-108. https://doi.org/10.1038/nmat4756 [13] Wan Q, Sharbati MT, Erickson JR, Du Y, Xiong F et al (2019) Emerging artificial synaptic devices for neuromorphic computing. Adv Mater Technol 4:1900037. https://doi.org/10.1002/admt.201900037 [14] Cheng Z, Ríos C, Pernice W, Wright C, Bhaskaran H et al (2017) On-chip photonic synapse. Sci Adv. 3:e1700160. https://doi.org/10.1126/sciadv.1700160 [15] He Y, Jiang S, Chen C, Wan C, Shi Y, Wan Q et al (2021) Electrolyte-gated neuromorphic transistors for brain-like dynamic computing. J Appl Phys 130:190904. https://doi.org/10.1063/5.0069456 [16] Dai S, Zhao Y, Wang Y, Zhang J, Fang L, Jin S et al (2019) Recent advances in transistor-based artificial synapses. Adv Func Mater 29:1903700. https://doi.org/10.1002/adfm.201903700 [17] He Y, Yang Y, Nie S, Liu R, Wan Q et al (2018) Electric-double-layer transistors for synaptic devices and neuromorphic systems. J Mater Chem C 6:5336-5352. https://doi.org/10.1039/c8tc00530c [18] Zhang X, Wang W, Liu Q, Zhao X, Wei J, Cao R et al (2018) An artificial neuron based on a threshold switching memristor. IEEE Electron Device Lett 39:308-311. https://doi.org/10.1109/led.2017.2782752 [19] Chen S, Mahmoodi MR, Shi Y, Mahata C, Yuan B, Liang X et al (2020) Wafer-scale integration of two-dimensional materials in high-density memristive crossbar arrays for artificial neural networks. Nat Electron 3:638-645. https://doi.org/10.1038/s41928-020-00473-w [20] Yao P, Wu H, Gao B, Tang J, Zhang Q, Zhang W et al (2020) Fully hardware-implemented memristor convolutional neural network. Nature 577:641-646. https://doi.org/10.1038/s41586-020-1942-4 [21] Cai F, Correll JM, Lee SH, Lim Y, Bothra V, Zhang Z et al (2019) A fully integrated reprogrammable memristor-CMOS system for efficient multiply-accumulate operations. Nat Electron 2:290-299. https://doi.org/10.1038/s41928-019-0270-x [22] Burr GW, BrightSky MJ, Sebastian A, Cheng H-Y, Wu J-Y, Kim S et al (2016) Recent progress in phase-change memory technology. IEEE J Emerg Sel Top Circuits Syst 6:146-162. https://doi.org/10.1109/jetcas.2016.2547718 [23] Nandakumar SR, Le Gallo M, Boybat I, Rajendran B, Sebastian A, Eleftheriou E et al (2018) A phase-change memory model for neuromorphic computing. J Appl Phys 124:152135. https://doi.org/10.1063/1.5042408 [24] Chen X, Xue Y, Sun Y, Shen J, Song S, Zhu M et al (2022) Neuromorphic photonic memory devices using ultrafast, non-volatile phase-change materials. Adv Mater 35:2203909. https://doi.org/10.1002/adma.202203909 [25] Bose SK, Mallinson JB, Gazoni RM, Brown SA et al (2017) Stable self-assembled atomic-switch networks for neuromorphic applications. IEEE Trans Electron Devices 64:5194-5201. https://doi.org/10.1109/ted.2017.2766063 [26] Ohno T, Hasegawa T, Tsuruoka T, Terabe K, Gimzewski JK, Aono M et al (2011) Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat Mater 10:591-595. https://doi.org/10.1038/nmat3054 [27] Ju JH, Seo S, Baek S, Lee D, Lee S, Lee T et al (2021) Two-dimensional MXene synapse for brain-inspired neuromorphic computing. Small 17:2102595. https://doi.org/10.1002/smll.202102595 [28] Kim K, Chen CL, Truong Q, Shen AM, Chen Y et al (2012) A carbon nanotube synapse with dynamic logic and learning. Adv Mater 25:1693-1698. https://doi.org/10.1002/adma.201203116 [29] Zhu LQ, Wan CJ, Guo LQ, Shi Y, Wan Q et al (2014) Artificial synapse network on inorganic proton conductor for neuromorphic systems. Nat Commun 5:3158. https://doi.org/10.1038/ncomms4158 [30] Gkoupidenis P, Schaefer N, Garlan B, Malliaras GG et al (2015) Neuromorphic functions in PEDOT:PSS organic electrochemical transistors. Adv Mater 27:7176-7180. https://doi.org/10.1002/adma.201503674 [31] Jiang J, Hu W, Xie D, Yang J, He J, Gao Y et al (2019) 2D electric-double-layer phototransistor for photoelectronic and spatiotemporal hybrid neuromorphic integration. Nanoscale 11:1360-1369. https://doi.org/10.1039/c8nr07133k [32] Min S-Y, Cho W-J (2021) Modulation of excitatory behavior by organic-inorganic hybrid electric-double-layers in polysilicon synaptic transistors. IEEE Electron Device Lett 42:70-73. https://doi.org/10.1109/led.2020.3042208 [33] Park E, Kim M, Kim TS, Kim IS, Park J, Kim J et al (2020) A 2D material-based floating gate device with linear synaptic weight update. Nanoscale 12:24503-24509. https://doi.org/10.1039/d0nr07403a [34] Paul T, Ahmed T, Kanhaiya Tiwari K, Singh Thakur C, Ghosh A et al (2019) A high-performance MoS2 synaptic device with floating gate engineering for neuromorphic computing. 2D Mater 6:045008. https://doi.org/10.1088/2053-1583/ab23ba [35] He Y, Liu R, Jiang S, Chen C, Zhu L, Shi Y et al (2020) IGZO-based floating-gate synaptic transistors for neuromorphic computing. J Phys D Appl Phys 53:215106. https://doi.org/10.1088/1361-6463/ab7bb4 [36] Kim M-K, Kim I-J, Lee J-S (2021) Oxide semiconductor-based ferroelectric thin-film transistors for advanced neuromorphic computing. Appl Phys Lett 118:032902. https://doi.org/10.1063/5.0035741 [37] Joh H, Jung M, Hwang J, Goh Y, Jung T, Jeon S et al (2021) Flexible ferroelectric hafnia-based synaptic transistor by focused-microwave annealing. ACS Appl Mater Interfaces 14:1326-1333. https://doi.org/10.1021/acsami.1c16873 [38] Cho SW, Jo C, Kim Y-H, Park SK (2022) Progress of materials and devices for neuromorphic vision sensors. Nano-Micro Lett 14:203. https://doi.org/10.1007/s40820-022-00945-y [39] Cho SW, Kwon SM, Kim Y-H, Park Sk et al (2021) Recent progress in transistor-based optoelectronic synapses: from neuromorphic computing to artificial sensory system. Adv Intell Syst 3:2000162. https://doi.org/10.1002/aisy.202000162 [40] Zhu Y, Mao H, Zhu Y, Wang X, Fu C, Ke S et al (2023) CMOS-compatible neuromorphic devices for neuromorphic perception and computing: a review. Int J Extreme Manuf 5:042010. https://doi.org/10.1088/2631-7990/acef79 [41] Liu H, Qin Y, Chen HY, Wu J, Ma J, Du Z et al (2023) Artificial neuronal devices based on emerging materials: neuronal dynamics and applications. Adv Mater 35:2205047. https://doi.org/10.1002/adma.202205047 [42] Kumar S, Wang X, Strachan JP, Yang Y, Lu WD et al (2022) Dynamical memristors for higher-complexity neuromorphic computing. Nat Rev Mater 7:575-591. https://doi.org/10.1038/s41578-022-00434-z [43] Li Y, Wang Z, Midya R, Xia Q, Yang JJ et al (2018) Review of memristor devices in neuromorphic computing: materials sciences and device challenges. J Phys D Appl Phys 51:503002. https://doi.org/10.1088/1361-6463/aade3f [44] Choi S, Yang J, Wang G (2020) Emerging memristive artificial synapses and neurons for energy-efficient neuromorphic computing. Adv Mater 32:2004659. https://doi.org/10.1002/adma.202004659 [45] You Z, Ramanathan S (2015) Mott memory and neuromorphic devices. Proc IEEE 103:1289-1310. https://doi.org/10.1109/jproc.2015.2431914 [46] LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436-444. https://doi.org/10.1038/nature14539 [47] Boahen K, Wang Y, Wijekoon J, Serrano-Gotarredona T, Saighi S, Folowosele F et al (2011) Neuromorphic silicon neuron circuits. Front Neurosci 5:73. https://doi.org/10.3389/fnins.2011.00073 [48] Tang J, Yuan F, Shen X, Wang Z, Rao M, He Y et al (2019) Bridging biological and artificial neural networks with emerging neuromorphic devices: fundamentals, progress, and challenges. Adv Mater 31:1902761. https://doi.org/10.1002/adma.201902761 [49] Han H, Yu H, Wei H, Gong J, Xu W et al (2019) Recent progress in three-terminal artificial synapses: from device to system. Small 15:1900695. https://doi.org/10.1002/smll.201900695 [50] Li X, Liu Y, Zhang J, Wu F, Hu M, Yang H et al (2022) Flexible artificial synapses based on field effect transistors: from materials mechanics towards applications. Adv Intell Syst 4:2200015. https://doi.org/10.1002/aisy.202200015 [51] Wan Q, Wan C, Zhu Y, Cui H, Yang Y et al (2023) Research progress of flexible neuromorphic transistors. J Inorg Mater 38:367-377. https://doi.org/10.15541/jim20220700 [52] Park HL, Lee Y, Kim N, Seo DG, Go GT, Lee TW et al (2019) Flexible neuromorphic electronics for computing, soft robotics, and neuroprosthetics. Adv Mater 32:1903558. https://doi.org/10.1002/adma.201903558 [53] Jia X, Guo R, Tay BK, Yan X et al (2022) Flexible ferroelectric devices: status and applications. Adv Funct Mater 32:2205933. https://doi.org/10.1002/adfm.202205933 [54] Sun F, Lu Q, Feng S, Zhang T et al (2021) Flexible artificial sensory systems based on neuromorphic devices. ACS Nano 15:3875-3899. https://doi.org/10.1021/acsnano.0c10049 [55] Ho VM, Lee J-A, Martin KC (2011) The cell biology of synaptic plasticity. Science 334:623-628. https://doi.org/10.1126/science.1209236 [56] Drachman DA (2005) Do we have brain to spare? Neurology 64:2004-2005. https://doi.org/10.1212/01.WNL.0000166914.38327.BB [57] Rogers RR, Krause DW, Curry Rogers K (2003) Cannibalism in the madagascan dinosaur majungatholus atopus. Nature 422:515-518. https://doi.org/10.1038/nature01532 [58] Bi G-Q, Poo M-M (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18:10464-10472. https://doi.org/10.1523/jneurosci.18-24-10464.1998 [59] Fioravante D, Regehr WG (2011) Short-term forms of presynaptic plasticity. Curr Opin Neurobiol 21:269-274. https://doi.org/10.1016/j.conb.2011.02.003 [60] Zucker RS, Regehr WG (2002) Short-term synaptic plasticity. Annu Rev Physiol 64:355-405. https://doi.org/10.1146/annurev.physiol.64.092501.114547 [61] Bliss TVP, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31-39. https://doi.org/10.1038/361031a0 [62] Bear MF, Malenka RC (1994) Synaptic plasticity: LTP and LTD. Curr Opin Neurobiol 4:389-399. https://doi.org/10.1016/0959-4388(94)90101-5 [63] Martin SJ, Grimwood PD, Morris RGM (2000) Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci 23:649-711. https://doi.org/10.1146/annurev.neuro.23.1.649 [64] Izhikevich EM, Desai NS (2003) Relating STDP to BCM. Neural Comput 15:1511-1523. http://sfn.scholarone.com [65] Abbott LF, Nelson SB (2000) Synaptic plasticity: taming the beast. Nat Neurosci 3:1178-1183. https://doi.org/10.1038/81453 [66] Shouval H (2010) Spike timing dependent plasticity: a consequence of more fundamental learning rules. Front Comput Neurosci 4:19. https://doi.org/10.3389/fncom.2010.00019 [67] Froemke RC, Dan Y (2002) Spike-timing-dependent synaptic modification induced by natural spike trains. Nature 416:433-438. https://doi.org/10.1038/416433a [68] Rachmuth G, Shouval HZ, Bear MF, Poon C-S (2011) A biophysically-based neuromorphic model of spike rate- and timing-dependent plasticity. Proc Natl Acad Sci 108:E1266-E1274. https://doi.org/10.1073/pnas.1106161108 [69] Li Q-X, Wang T-Y, Wang X-L, Chen L, Zhu H, Wu X-H et al (2020) Flexible organic field-effect transistor arrays for wearable neuromorphic device applications. Nanoscale 12:23150-23158. https://doi.org/10.1039/d0nr06478e [70] Zeng J, Zhao J, Bu T, Liu G, Qi Y, Zhou H et al (2022) A flexible tribotronic artificial synapse with bioinspired neurosensory behavior. Nano-Micro Lett 15:18. https://doi.org/10.1007/s40820-022-00989-0 [71] Zhu Q-B, Li B, Yang D-D, Liu C, Feng S, Chen M-L et al (2021) A flexible ultrasensitive optoelectronic sensor array for neuromorphic vision systems. Nat Commun. 12:1798. https://doi.org/10.1038/s41467-021-22047-w [72] Meng J, Wang T, Zhu H et al (2021) Integrated In-sensor computing optoelectronic device for environment-adaptable artificial retina perception application. Nano Lett 22:81-89. https://doi.org/10.1021/acs.nanolett.1c03240 [73] Li ZY, Zhu LQ, Guo LQ, Ren ZY, Xiao H, Cai JC (2021) Mimicking neurotransmitter activity and realizing algebraic arithmetic on flexible protein-gated oxide neuromorphic transistors. ACS Appl Mater Interfaces 13:7784-7791. https://doi.org/10.1021/acsami.0c22047 [74] Huang X, Liu Y, Liu G, Liu K, Wei X, Zhu M et al (2022) Short-wave infrared synaptic phototransistor with ambient light adaptability for flexible artificial night visual system. Adv Func Mater 33:2208836. https://doi.org/10.1002/adfm.202208836 [75] Zhang J, Sun T, Zeng S, Hao D, Yang B, Dai S et al (2022) Tailoring neuroplasticity in flexible perovskite QDs-based optoelectronic synaptic transistors by dual modes modulation. Nano Energy 95:106987. https://doi.org/10.1016/j.nanoen.2022.106987 [76] He Y, Zhu L, Zhu Y, Chen C, Jiang S, Liu R et al (2021) Recent progress on emerging transistor-based neuromorphic devices. Adv Intell Syst 3:2000210. https://doi.org/10.1002/aisy.202000210 [77] Sun C, Liu X, Jiang Q, Ye X, Zhu X, Zhu R-W et al (2023) Emerging electrolyte-gated transistors for neuromorphic perception. Sci Technol Adv Mater 24:2162325. https://doi.org/10.1080/14686996.2022.2162325 [78] Guo LQ, Han H, Zhu LQ, Guo YB, Yu F, Ren ZY et al (2019) Oxide neuromorphic transistors gated by polyvinyl alcohol solid electrolytes with ultralow power consumption. ACS Appl Mater Interfaces 11:28352-28358. https://doi.org/10.1021/acsami.9b05717 [79] Yang JT, Ge C, Du JY, Huang HY, He M, Wang C et al (2018) Artificial synapses emulated by an electrolyte-gated tungsten-oxide transistor. Adv Mater 30:1801548. https://doi.org/10.1002/adma.201801548 [80] Xu DD, Deng X, Zhao YF, Ma RR, Zhong N, Huang R et al (2019) Hydrogenation dynamics of electrically controlled metal-insulator transition in proton-gated transparent and flexible WO3 transistors. Adv Func Mater 29:1902497. https://doi.org/10.1002/adfm.201902497 [81] Sun Y, Li M, Ding Y, Wang H, Wang H, Chen Z et al (2022) Programmable van-der-Waals heterostructure-enabled optoelectronic synaptic floating-gate transistors with ultra-low energy consumption. InfoMat. 4:e12317. https://doi.org/10.1002/inf2.12317 [82] Danial L, Pikhay E, Herbelin E et al (2019) Two-terminal floating-gate transistors with a low-power memristive operation mode for analogue neuromorphic computing. Nat Electron 2:596-605. https://doi.org/10.1038/s41928-019-0331-1 [83] Zhang H, Zhang Y, Yu Y, Song X, Zhang H, Cao M et al (2017) Ambipolar quantum-dot-based low-voltage nonvolatile memory with double floating gates. ACS Photonics 4:2220-2227. https://doi.org/10.1021/acsphotonics.7b00416 [84] Ren Y, Yang JQ, Zhou L, Mao JY, Zhang SR, Zhou Y et al (2018) Gate-tunable synaptic plasticity through controlled polarity of charge trapping in fullerene composites. Adv Funct Mater 28:1805599. https://doi.org/10.1002/adfm.201805599 [85] Kim D, Jeon Y-R, Ku B, Chung C, Kim TH, Yang S et al (2021) Analog synaptic transistor with Al-doped HfO2 ferroelectric thin film. ACS Appl Mater Interfaces 13:52743-52753. https://doi.org/10.1021/acsami.1c12735 [86] Nishitani Y, Kaneko Y, Ueda M, Fujii E, Tsujimura A et al (2013) Dynamic observation of brain-like learning in a ferroelectric synapse device. Jpn J Appl Phys 52:04CE06. https://doi.org/10.7567/jjap.52.04ce06 [87] Kim M-K, Lee J-S (2019) Ferroelectric analog synaptic transistors. Nano Lett 19:2044-2050. https://doi.org/10.1021/acs.nanolett.9b00180 [88] Dai S, Wu X, Liu D, Chu Y, Wang K, Yang B et al (2018) Light-stimulated synaptic devices utilizing interfacial effect of organic field-effect transistors. ACS Appl Mater Interfaces 10:21472-21480. https://doi.org/10.1021/acsami.8b05036 [89] Wu Q, Wang J, Cao J, Lu C, Yang G, Shi X et al (2018) Photoelectric plasticity in oxide thin film transistors with tunable synaptic functions. Adv Electron Mater 4:1800556. https://doi.org/10.1002/aelm.201800556 [90] Kim MK, Lee JS (2020) Synergistic improvement of long-term plasticity in photonic synapses using ferroelectric polarization in hafnia-based oxide-semiconductor transistors. Adv Mater 32:1907826. https://doi.org/10.1002/adma.201907826 [91] Lee M, Lee W, Choi S, Jo JW, Kim J, Park SK et al (2017) Brain-inspired photonic neuromorphic devices using photodynamic amorphous oxide semiconductors and their persistent photoconductivity. Adv Mater 29:1700951. https://doi.org/10.1002/adma.201700951 [92] Wang Y, Lv Z, Chen J, Wang Z, Zhou Y, Zhou L et al (2018) Photonic synapses based on inorganic perovskite quantum dots for neuromorphic computing. Adv Mater 30:1802883. https://doi.org/10.1002/adma.201802883 [93] Seo S, Lee JJ, Lee RG, Kim TH, Park S, Jung S et al (2021) An optogenetics-inspired flexible van der Waals optoelectronic synapse and its application to a convolutional neural network. Adv Mater 33:e2102980. https://doi.org/10.1002/adma.202102980 [94] Zhou J, Wan C, Zhu L, Shi Y, Wan Q et al (2013) Synaptic behaviors mimicked in flexible oxide-based transistors on plastic substrates. IEEE Electron Device Lett 34:1433-1435. https://doi.org/10.1109/led.2013.2280663 [95] Wu G, Zhang J, Wan X, Yang Y, Jiang S et al (2014) Chitosan-based biopolysaccharide proton conductors for synaptic transistors on paper substrates. J Mater Chem C 2:6249-6255. https://doi.org/10.1039/c4tc00652f [96] Wang TY, Meng JL, He ZY, Chen L, Zhu H, Sun QQ et al (2020) Ultralow power wearable heterosynapse with photoelectric synergistic modulation. Adv Sci 7:1903480. https://doi.org/10.1002/advs.201903480 [97] Liu Q, Liu Y, Li J, Lau C, Wu F, Zhang A et al (2019) Fully printed all-solid-state organic flexible artificial synapse for neuromorphic computing. ACS Appl Mater Interfaces 11:16749-16757. https://doi.org/10.1021/acsami.9b00226 [98] Yu F, Zhu LQ, Gao WT, Fu YM, Xiao H, Tao J et al (2018) Chitosan-based polysaccharide-gated flexible indium tin oxide synaptic transistor with learning abilities. ACS Appl Mater Interfaces 10:16881-16886. https://doi.org/10.1021/acsami.8b03274 [99] Yu F, Zhu LQ, Xiao H, Gao WT, Guo YB (2018) Restickable oxide neuromorphic transistors with spike-timing-dependent plasticity and pavlovian associative learning activities. Adv Funct Mater 28:1804025. https://doi.org/10.1002/adfm.201804025 [100] Fanselow MS, Poulos AM (2005) The neuroscience of mammalian associative learning. Annu Rev Psychol 56:207-234. https://doi.org/10.1146/annurev.psych.56.091103.070213 [101] Guo YB, Zhu LQ, Long TY, Wan DY, Ren ZY et al (2020) Bio-polysaccharide electrolyte gated photoelectric synergic coupled oxide neuromorphic transistor with Pavlovian activities. J Mater Chem C 8:2780-2789. https://doi.org/10.1039/c9tc06749c [102] Wang Y, Sun Q, Yu J, Xu N, Wei Y, Cho JH et al (2023) Boolean logic computing based on neuromorphic transistor. Adv Funct Mater 33:2305791. https://doi.org/10.1002/adfm.202305791 [103] Chen H, Xue X, Liu C, Fang J, Wang Z, Wang J et al (2021) Logic gates based on neuristors made from two-dimensional materials. Nat Electron 4:399-404. https://doi.org/10.1038/s41928-021-00591-z [104] Liu YH, Zhu LQ, Feng P, Shi Y, Wan Q et al (2015) Freestanding artificial synapses based on laterally proton-coupled transistors on chitosan membranes. Adv Mater 27:5599-5604. https://doi.org/10.1002/adma.201502719 [105] Hou Y-X, Li Y, Zhang Z-C, Li J-Q, Qi D-H, Chen X-D et al (2020) Large-scale and flexible optical synapses for neuromorphic computing and integrated visible information sensing memory processing. ACS Nano 15:1497-1508. https://doi.org/10.1021/acsnano.0c08921 [106] Machens CK (2012) Building the human brain. Science 338:1156-1157. https://doi.org/10.1126/science.1231865 [107] Hasler J, Marr B (2013) Finding a roadmap to achieve large neuromorphic hardware systems. Front Neurosci 7:118. https://doi.org/10.3389/fnins.2013.00118 [108] Duan N, Li Y, Chiang H-C, Chen J, Pan W-Q, Zhou Y-X et al (2019) An electro-photo-sensitive synaptic transistor for edge neuromorphic visual systems. Nanoscale 11:17590-17599. https://doi.org/10.1039/c9nr04195h [109] Ling H, Koutsouras DA, Kazemzadeh S, van de Burgt Y, Yan F, Gkoupidenis P et al (2020) Electrolyte-gated transistors for synaptic electronics, neuromorphic computing, and adaptable biointerfacing. Appl Phys Rev 7:011307. https://doi.org/10.1063/1.5122249 [110] Liu X, Sun C, Guo Z, Zhang Y, Zhang Z, Shang J et al (2022) A flexible dual-gate hetero-synaptic transistor for spatiotemporal information processing. Nanoscale Adv 4:2412-2419. https://doi.org/10.1039/d2na00146b [111] Zheng C, Liao Y, Wang J, Zhou Y, Han S-T et al (2022) Flexible floating-gate electric-double-layer organic transistor for neuromorphic computing. ACS Appl Mater Interfaces 14:57102-57112. https://doi.org/10.1021/acsami.2c20925 [112] Deng X, Wang SQ, Liu YX, Zhong N, He YH, Peng H et al (2021) A flexible mott synaptic transistor for nociceptor simulation and neuromorphic computing. Adv Funct Mater 31:2101099. https://doi.org/10.1002/adfm.202101099 [113] Wu Z, Shi P, Xing R, Yu T, Zhao L, Wei L et al (2022) Flexible mott synaptic transistor on polyimide substrate for physical neural networks. Adv Electron Mater 8:2200078. https://doi.org/10.1002/aelm.202200078 [114] Zhong G, Zi M, Ren C, Xiao Q, Tang M, Wei L et al (2020) Flexible electronic synapse enabled by ferroelectric field effect transistor for robust neuromorphic computing. Appl Phys Lett 117:092903. https://doi.org/10.1063/5.0013638 [115] Wang G, Wang R, Kong W, Zhang J (2018) Simulation of retinal ganglion cell response using fast independent component analysis. Cogn Neurodyn 12:615-624. https://doi.org/10.1007/s11571-018-9490-4 [116] Qiu W, Huang Y, Kong LA, Chen Y, Liu W, Wang Z et al (2020) Optoelectronic In-Ga-Zn-O memtransistors for artificial vision system. Adv Funct Mater 30:2002325. https://doi.org/10.1002/adfm.202002325 [117] Baylor DA (1987) Photoreceptor Signals and Vision. Proctor lecture. Invest Ophth Vis Sci 28:34-49. https://iovs.arvojournals.org [118] Kumar A, Intonti K, Viscardi L, Durante O, Pelella A, Kharsah O et al (2024) Memory effect and coexistence of negative and positive photoconductivity in black phosphorus field effect transistor for neuromorphic vision sensors. Mater Horiz 11:2397-2405. https://doi.org/10.1039/d4mh00027g [119] Wang WS, Zhu LQ (2022) Recent advances in neuromorphic transistors for artificial perception applications. Sci Technol Adv Mater 24:2152290. https://doi.org/10.1080/14686996.2022.2152290 [120] Li Y, Wang J, Yang Q, Shen G (2022) Flexible artificial optoelectronic synapse based on lead-free metal halide nanocrystals for neuromorphic computing and color recognition. Adv Sci 9:2202123. https://doi.org/10.1002/advs.202202123 [121] Shi J, Jie J, Deng W, Luo G, Fang X, Xiao Y et al (2022) A fully solution-printed photosynaptic transistor array with ultralow energy consumption for artificial-vision neural networks. Adv Mater 34:2200380. https://doi.org/10.1002/adma.202200380 [122] Yu F, Cai JC, Zhu LQ, Sheikhi M, Zeng YH, Guo W et al (2020) Artificial Tactile Perceptual Neuron with Nociceptive and Pressure Decoding Abilities. ACS Appl Mater Interfaces 12:26258-26266. https://doi.org/10.1021/acsami.0c04718 [123] Wang M, Luo Y, Wang T, Wan C, Pan L, Pan S et al (2020) Artificial skin perception. Adv Mater 33:2003014. https://doi.org/10.1002/adma.202003014 [124] Hua Q, Sun J, Liu H, Bao R, Yu R, Zhai J et al (2018) Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat Commun 9:244. https://doi.org/10.1038/s41467-017-02685-9 [125] Webb RC, Bonifas AP, Behnaz A, Zhang Y, Yu KJ, Cheng H et al (2013) Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat Mater 12:938-944. https://doi.org/10.1038/nmat3755 [126] Wan C, Chen G, Fu Y, Wang M, Matsuhisa N, Pan S et al (2018) An artificial sensory neuron with tactile perceptual learning. Adv Mater 30:1801291. https://doi.org/10.1002/adma.201801291 [127] Jiang C, Liu J, Yang L, Gong J, Wei H, Xu W et al (2022) A flexible artificial sensory nerve enabled by nanoparticle-assembled synaptic devices for neuromorphic tactile recognition. Adv Sci 9:2106124. https://doi.org/10.1002/advs.202106124 [128] Chen Y, Gao G, Zhao J, Zhang H, Yu J, Yang X et al (2019) Piezotronic graphene artificial sensory synapse. Adv Funct Mater 29:1900959. https://doi.org/10.1002/adfm.201900959 [129] Rubel EW, Fritzsch B (2002) Auditory system development: primary auditory neurons and their targets. Annu Rev Neurosci 25:51-101. https://doi.org/10.1146/annurev.neuro.25.112701.142849 [130] Liu Y, Li E, Wang X, Chen Q, Zhou Y, Hu Y et al (2020) Self-powered artificial auditory pathway for intelligent neuromorphic computing and sound detection. Nano Energy 78:105403. https://doi.org/10.1016/j.nanoen.2020.105403 [131] Lian Q, Liu Y, Zhang X, Shan L, Wu X, Chen H et al (2021) Noise detection system based on noise triboelectric nanogenerator and synaptic transistors. IEEE Electron Device Lett 42:1334-1337. https://doi.org/10.1109/led.2021.3099510 [132] Wan H, Zhao J, Lo L-W, Cao Y, Sepúlveda N, Wang C et al (2021) Multimodal artificial neurological sensory-memory system based on flexible carbon nanotube synaptic transistor. ACS Nano 15:14587-14597. https://doi.org/10.1021/acsnano.1c04298 [133] Han JK, Kang M, Jeong J, Cho I, Yu JM, Yoon KJ et al (2022) Artificial olfactory neuron for an In-sensor neuromorphic nose. Adv Sci 9:2106017. https://doi.org/10.1002/advs.202106017 [134] Su C-Y, Menuz K, Carlson JR (2009) Olfactory perception: receptors, cells, and circuits. Cell 139:45-59. https://doi.org/10.1016/j.cell.2009.09.015 [135] Brann JH, Firestein SJ (2014) A lifetime of neurogenesis in the olfactory system. Front Neurosci 8:182. https://doi.org/10.3389/fnins.2014.00182 [136] Duan G, Huang S, Feng Z, Xie P, Zhang F, Zhou Y et al (2023) Three-terminal artificial olfactory sensors based on emerging materials: mechanism and application. Adv Funct Mater 33:202209969. https://doi.org/10.1002/adfm.202209969 [137] Song Z, Tong Y, Zhao X, Ren H, Tang Q, Liu Y et al (2019) A flexible conformable artificial organ-damage memory system towards hazardous gas leakage based on a single organic transistor. Mater Horiz 6:717-726. https://doi.org/10.1039/c8mh01577e [138] Deng Y, Zhao M, Ma Y, Liu S, Liu M, Shen B et al (2023) A flexible and biomimetic olfactory synapse with gasotransmitter-mediated plasticity. Adv Func Mater 33:2214139. https://doi.org/10.1002/adfm.202214139 [139] Koelewijn T, Bronkhorst A, Theeuwes J (2010) Attention and the multiple stages of multisensory integration: A review of audiovisual studies. Acta Psychol 134:372-384. https://doi.org/10.1016/j.actpsy.2010.03.010 [140] Brandwein AB, Foxe JJ, Butler JS, Russo NN, Altschuler TS, Gomes H et al (2012) The development of multisensory integration in high-functioning autism: high-density electrical mapping and psychophysical measures reveal impairments in the processing of audiovisual inputs. Cereb Cortex 23:1329-1341. https://doi.org/10.1093/cercor/bhs109 [141] Calvert GA, Thesen T (2004) Multisensory integration: methodological approaches and emerging principles in the human brain. J Physiol-paris 98:191-205. https://doi.org/10.1016/j.jphysparis.2004.03.018 [142] Beauchamp MS (2005) See me, hear me, touch me: multisensory integration in lateral occipital-temporal cortex. Curr Opin Neurobiol 15:145-153. https://doi.org/10.1016/j.conb.2005.03.011 [143] Wu X, Li E, Liu Y, Lin W, Yu R, Chen G et al (2021) Artificial multisensory integration nervous system with haptic and iconic perception behaviors. Nano Energy 85:106000. https://doi.org/10.1016/j.nanoen.2021.106000 [144] Wan C, Cai P, Guo X, Wang M, Matsuhisa N, Yang L et al (2020) An artificial sensory neuron with visual-haptic fusion. Nat Commun. 11:4602. https://doi.org/10.1038/s41467-020-18375-y [145] Jiang C, Liu J, Ni Y, Qu S, Liu L, Li Y et al (2023) Mammalian-brain-inspired neuromorphic motion-cognition nerve achieves cross-modal perceptual enhancement. Nat Commun. 14:1344. https://doi.org/10.1038/s41467-023-36935-w | 
| No related articles found! | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||