| [1] Wood O, Arnold J, Brunner T, Burkhardt M, Chen JH-C, Civay D, Fan SS-C, Gallagher E, Halle S, He M, Higgins C, Kato H, Kye J, Koay C-S, Landie G, Leung P, McIntyre G, Nagai S, Petrillo K, Raghunathan S, Schlief R, Sun L, Wagner A, Wallow T, Yin Y, Zhu X, Colburn M, Corliss D, Smolinski C (2012) Insertion strategy for EUV lithography. SPIE Adv Lithography 8322:832203 [2] Hermans JV, Laidler D, Foubert P, D’havé K, Cheng S, Dusa M et al (2012) Progress in EUV lithography towards manufacturing from an exposure tool perspective. Extreme Ultraviolet (EUV) Lithography III 8322:19-31
 [3] Shite H, Matsunaga K, Nafus K, Kosugi H, Foubert P, Hermans J et al (2012) Latest cluster performance for EUV lithography. Extreme Ultraviolet (EUV) Lithography III 8322:848-856
 [4] Lin EK, Soles CL, Goldfarb DL, Trinque BC, Burns SD, Jones RL, Lenhart JL, Angelopoulos M, Willson CG, Satija SK, Wu W (2002) Direct Measurement of the Reaction Front in Chemically Amplified Photoresists. Science 297(5580):372-375
 [5] De Silva A, Felix NM, Ober CK (2008) Molecular Glass Resists as High-Resolution Patterning Materials. Adv Mater 20(17):3355-3361
 [6] Li L, Chakrabarty S, Jiang J, Zhang B, Ober C, Giannelis EP (2016) Solubility Studies of Inorganic-Organic Hybrid Nanoparticle Photoresists with Different Surface Functional Groups. Nanoscale 8(3):1338-1343
 [7] Manouras T, Argitis P (2020) High Sensitivity Resists for Euv Lithography: A Review of Material Design Strategies and Performance Results. Nanomaterials 10(8):1593
 [8] Itani T, Kozawa T (2012) Resist Materials and Processes for Extreme Ultraviolet Lithography. Jpn J Appl Phys 52(1R):010002
 [9] Kwark Y-J, Bravo-Vasquez J-P, Ober CK, Cao HB, Deng H, Meagley RP (2003) Novel Silicon-Containing Polymers as Photoresist Materials for EUV Lithography. Advances in Resist Technology and Processing XX 5039:1204-1211
 [10] Stowers JK, Telecky A, Kocsis M, Clark BL, Keszler DA, Grenville A et al (2011) irectly patterned inorganic hardmask for EUV lithography. Extreme Ultraviolet (EUV) Lithography II 7969:386-396
 [11] Sharp BL, Narcross HL, Ludovice P, Tolbert LM, Henderson CL (2019) Structural Effects on the Performance of Epoxide-Based Negative-Tone Molecular Resists. J Vac Sci Technol B 37(1):011604
 [12] Li L, Chakrabarty S, Spyrou K, Ober CK, Giannelis EP (2015) Studying the Mechanism of Hybrid Nanoparticle Photoresists: Effect of Particle Size on Photopatterning. Chem Mater 27(14):5027-5031
 [13] Gronheid R, Roey FV, Steenwinckel DV (2008) Using KLUP for Understanding Trends in EUV Resist Performance. J Photopolym Sci Technol 21(3):429-434
 [14] Li L, Liu X, Pal S, Wang S, Ober CK, Giannelis EP (2017) Extreme Ultraviolet Resist Materials for Sub-7 Nm Patterning. Chem Soc Rev 46(16):4855-4866
 [15] Kozawa T, Tagawa S (2010) Radiation chemistry in chemically amplified resists. Jpn J Appl Phys 49(3):030001
 [16] Mack CA, Thackeray JW, Biafore JJ, Smith MD (2011) Stochastic Exposure Kinetics of EUV Photoresists: A Simulation Study. J Micro/Nanolithogr MEMS MOEMS 10(3):033019
 [17] Yasuda M, Nobuo T, Kawata H (2004) A Monte Carlo calculation of secondary electron emission from organic compounds. Jpn J Appl Phys 43(6B):4004-4008
 [18] Goldfarb DL, Afzali-Ardakani A, Glodde M (2016) Acid generation efficiency: EUV photons versus photoelectrons. Adv Patterning Mater Process XXXIII 9779:97790A
 [19] Ma JH, Wang H, Prendergast D, Neureuther A, Naulleau P (2020) Investigating extreme ultraviolet radiation chemistry with first-principles quantum chemistry calculations. J Micro/Nanolith MEMS MOEMS 19:034601
 [20] Kim M, Moon J, Choi J, Park S, Lee B, Cho M (2018) Multiscale simulation approach on sub-10 nm extreme ultraviolet photoresist patterning: insights from nanoscale heterogeneity of polymer. Macromolecules 51(17):6922-6935
 [21] Kim M, Park S, Choi J, Moon J, Cho M (2021) Tailoring polymer microstructure for the mitigation of the pattern collapse in sub-10 nm euv lithography: multiscale simulation study. Appl Surf Sci 536:147514
 [22] Stern R, Hutchison DC, Olsen MR, Zakharov LN, Nyman M, Persson KA (2019) Alkyltin keggin clusters as euvl photoresist technology. Int Conference Extreme Ultraviolet Lithography 2019(11147):11147
 [23] Lee H, Park S, Kim M, Moon J, Lee B, Cho M (2021) Multiscale simulation of extreme ultraviolet nanolithography: impact of acid-base reaction on pattern roughness. J Mater Chem C 9(4):1183-1195
 [24] Iikura H, Tsuneda T, Yanai T, Hirao K (2001) A Long-Range correction scheme for generalized-gradient-approximation exchange functionals. J Chem Phys 115(8):3540-3544
 [25] Stein T, Kronik L, Baer R (2009) Prediction of charge-transfer excitations in coumarin-based dyes using a range-separated functional tuned from first principles. J Chem Phys 131(24):244119
 [26] Baer R, Livshits E, Salzner U (2010) Tuned Range-separated hybrids in density functional theory. Annu Rev Phys Chem 61(1):85-109
 [27] Sun H, Ryno S, Zhong C, Ravva MK, Sun Z, Körzdörfer T, Brédas J-L (2016) Ionization energies, electron affinities, and polarization energies of organic molecular crystals: quantitative estimations from a polarizable continuum model (pcm)-tuned range-separated density functional approach. J Chem Theory Comput 12(6):2906-2916
 [28] Sun H, Zhang S, Zhong C, Sun Z (2016) Theoretical study of excited states of DNA base dimers and tetramers using optimally tuned range-separated density functional theory. J Comput Chem 37(7):684-693
 [29] Liakos DG, Neese F (2015) Is it possible to obtain coupled cluster quality energies at near density functional theory cost? domain-based local pair natural orbital coupled cluster vs modern density functional theory. J Chem Theory Comput 11(9):4054-4063
 [30] Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made Simple. Phys Rev Lett 77(18):3865-3868
 [31] Becke AD (1993) A New Mixing of Hartree-Fock and Local Density-functional Theories. J Chem Phys 98(2):1372-1377
 [32] Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab Initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98(45):11623-11627
 [33] Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110(13):6158-6170
 [34] Yu HS, He X, Li SL, Truhlar DG (2016) MN15 a kohn-sham global-hybrid exchange-correlation density functional with broad accuracy for multi-reference and single-reference systems and noncovalent interactions. Chem Sci 7(8):5032-5051
 [35] Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-Class functionals and 12 other functionals. Theor Chem Acc 120(1-3):215-241
 [36] Zhao Y, Truhlar DG (2006) Density functional for spectroscopy: no long-range self-interaction error, good performance for rydberg and charge-transfer states, and better performance on average than B3lyp for ground states. J Phys Chem A 110(49):13126-13130
 [37] Krukau AV, Vydrov OA, Izmaylov AF, Scuseria GE (2006) Influence of the exchange screening parameter on the performance of screened hybrid functionals. J Chem Phys 125(22):224106
 [38] Yanai T, Tew DP, Handy NC (2004) A New Hybrid Exchange-Correlation Functional Using the Coulomb-Attenuating Method (CAM-B3LYP). Chem Phys Lett 393(1-3):51-57
 [39] Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys Chem Chem Phys 10(44):6615-6620
 [40] Vydrov OA, Scuseria GE (2006) Assessment of a Long-Range Corrected Hybrid Functional. J Chem Phys 125(23):234109
 [41] Vydrov OA, Heyd J, Krukau AV, Scuseria GE (2006) Importance of short-range versus long-range hartree-fock exchange for the performance of hybrid density functionals. J Chem Phys 125(7):074106
 [42] Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) Development and use of quantum mechanical molecular models 76 AM1 A new general purpose quantum mechanical molecular model. J. Am Chem Soc 107(13):3902-3909
 [43] Stewart JJP (2007) Optimization of parameters for semiempirical methods v: modification of NDDO approximations and application to 70 elements. J Mol Model 13(12):1173-1213
 [44] Stewart JJP (2013) Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters. J Mol Model 19(1):1-32
 [45] Grimme S, Bannwarth C, Shushkov P (2017) A robust and accurate tight-binding quantum chemical method for structures, vibrational frequencies, and noncovalent interactions of large molecular systems parametrized for all spd-block elements (Z = 1-86). J Chem Theory Comput 13(5):1989-2009
 [46] Bannwarth C, Caldeweyher E, Ehlert S, Hansen A, Pracht P, Seibert J, Spicher S, Grimme S (2021) Extended tight-binding quantum chemistry methods. WIREs Comput Mol Sci 11(2):e01493
 [47] Ásgeirsson V, Bauer CA, Grimme S (2017) Quantum chemical calculation of electron ionization mass spectra for general organic and inorganic molecules. Chem Sci 8(7):4879-4895
 [48] Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132(15):154104
 [49] Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32(7):1456-1465
 [50] Witte J, Goldey M, Neaton JB, Head-Gordon M (2015) Beyond energies: geometries of nonbonded molecular complexes as metrics for assessing electronic structure approaches. J Chem Theory Comput 11(4):1481-1492
 [51] Hariharan PC, Pople JA (1974) Accuracy of AHn equilibrium geometries by single determinant molecular orbital theory. Mol Phys 27(1):209-214
 [52] Petersson GA, Bennett A, Tensfeldt TG, Al-Laham MA, Shirley W, Mantzaris JA (1988) A, complete basis set model chemistry i the total energies of closed-shell atoms and hydrides of the first-row elements. J. Chem. Phys. 89(4):2193-2218
 [53] Dunning TH (1989) Gaussian basis sets for use in correlated molecular calculations I the atoms boron through neon and hydrogen. J. Chem. Phys. 90(2):1007-1023
 [54] Kendall RA, Dunning TH, Harrison RJ (1992) Electron affinities of the first-row atoms revisited systematic basis sets and wave functions. J. Chem. Phys. 96(9):6796-6806
 [55] Neese F (2022) Software update the program system version-5.0. WIREs Comput Mol Sci. 12(5):1606
 [56] Frisch MJ et al (2016) Gaussian 16, Revision B.01. Gaussian, Inc., Wallingford CT
 [57] Humphrey W, Dalke A, Schulten K (1996) VMD: Visual Molecular Dynamics. J Mol Graph 14(1):33-38
 [58] Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580-592
 [59] Whittleton SR, Sosa Vazquez XA, Isborn CM, Johnson ER (2015) Density-functional errors in ionization potential with increasing system size. J Chem Phys 142(18):184106
 [60] Garrett K, Sosa Vazquez X, Egri SB, Wilmer J, Johnson LE, Robinson BH, Isborn CM (2014) optimum exchange for calculation of excitation energies and hyperpolarizabilities of organic electro-optic chromophores. J Chem Theory Comput 10(9):3821-3831
 |