[1] Sridhar A, Nguyen CH, Abushalha K, Saghir I, Tahanan A, Rahbar MH et al (2022) Major stressful events and risk of developing head/neck and pancreatic cancer. J Clin Oncol 40:12128-12128. https://doi.org/10.1200/JCO.2022.40.16_suppl.12128 [2] Sara JDS, Toya T, Ahmad A, Clark MM, Gilliam WP, Lerman LO et al (2022) Mental stress and its effects on vascular health. Mayo Clin Proc 97(5):951-990. https://doi.org/10.1016/j.mayocp.2022.02.004 [3] Tang W, Yin L, Sempionatto JR, Moon JM, Teymourian H, Wang J (2021) Touch-based stressless cortisol sensing. Adv Mater 33:2008465. https://doi.org/10.1002/adma.202008465 [4] Craske MG, Dunn BD, Meuret AE, Rizvi SJ, Taylor CT (2024) Positive affect and reward processing in the treatment of depression, anxiety and trauma. Nat Rev Psychol 3:665-685. https://doi.org/10.1038/s44159-024-00355-4 [5] Firth J, Solmi M, Wootton RE, Vancampfort D, Schuch FB, Hoare E et al (2020) A meta-review of “lifestyle psychiatry”: the role of exercise, smoking, diet and sleep in the prevention and treatment of mental disorders. World Psychiatry 19:360-380. https://doi.org/10.1002/wps.20773 [6] Munck A, Jacobson L, Sapolsky R (1984) Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. Endocr Rev 12(2):118-134. https://doi.org/10.1210/edrv-5-1-25 [7] Yeager DS, Bryan CJ, Gross JJ, Murray JS, Cobb DK, Santos PHF et al (2022) A synergistic mindsets intervention protects adolescents from stress. Nature 607:512-520. https://doi.org/10.1038/s41586-022-04907-7 [8] Zea M, Bellagambi FG, Halima HB, Zine N, Jaffrezic-Renault N, Villa R et al (2020) Electrochemical sensors for cortisol detections: almost there. TrAc Trends Anal Chem 132:116058. https://doi.org/10.1016/j.trac.2020.116058 [9] Mendoza J (2024) Circadian disruptions and brain clock dysregulation in mood disorders. Nat Mental Health 2:749-763. https://doi.org/10.1038/s44220-024-00260-y [10] Russell G, Lightman S (2019) The human stress response. Nat Rev Endocrinol 15(9):525-534. https://doi.org/10.1038/s41574-019-0228-0 [11] Ok J, Park S, Jung YH, Kim T (2023) Wearable and implantable cortisol-sensing electronics for stress monitoring. Adv Mater 36(1):2211595. https://doi.org/10.1002/adma.202211595 [12] Fleseriu M, Varlamov EV, Hinojosa-Amaya JM, Langlois F, Melmed S (2023) An individualized approach to the management of Cushing disease. Nat Rev Endocrinol 19:581-599. https://doi.org/10.1038/s41574-023-00868-7 [13] Sargent J (2014) Cortisol rhythms in Addison disease. Nat Rev Endocrinol 10:250. https://doi.org/10.1038/nrendo.2014.25 [14] Bruin M, Nuland M, Jacobs B, Bergman AM, Rosing H, Beijnen JH et al (2021) Cortisol as biomarker for CYP17 inhibition in mCRPC patients treated with abiraterone acetate. J Clin Oncol 39:5035-5035. https://doi.org/10.1200/JCO.2021.39.15_suppl.5035 [15] Villa JEL, Garcia I, Aberasturi DJ, Pavlov V, Sotomayor MDPT, Liz-Marzán LM (2020) SERS-based immunoassay for monitoring cortisol-related disorders. Biosens Bioelectron 165:112418. https://doi.org/10.1016/j.bios.2020.112418 [16] Prete A, Bancos I (2024) Mild autonomous cortisol secretion: pathophysiology, comorbidities and management approaches. Nat Rev Endocrinol 20:460-473. https://doi.org/10.1038/s41574-024-00984-y [17] Ma H, Pan S, Wang W, Yue X, Xi X, Yan S et al (2024) Surface-enhanced Raman spectroscopy: current understanding, challenges, and opportunities. ACS Nano 18(22):14000-14019. https://doi.org/10.1021/acsnano.4c02670 [18] Schlücker S (2014) Oberflächenverstärkte Raman-Spektroskopie: Konzepte und chemische Anwendungen. Angew Chem Int Ed 126(19):4852-4894. https://doi.org/10.1002/ange.201205748 [19] Lin CL, Liang S, Peng Y, Long L, Li Y, Huang Z et al (2022) Visualized SERS imaging of single molecule by Ag/Black phosphorus nanosheets. Nanomicro Lett 14:75. https://doi.org/10.1007/s40820-022-00803-x [20] Wang X, Guo L (2019) SERS activity of semiconductors: crystalline and amorphous nanomaterials. Angew Chem Int Ed 132(11):4259-4267. https://doi.org/10.1002/ange.201913375 [21] Li F, Mu X, Tang X, Song G, Sun H, Zha X et al (2023) Semiconductor SERS on colourful substrates with Fabry-Pérot cavities. Angew Chem Int Ed 62(12):e202218055. https://doi.org/10.1002/anie.202218055 [22] Wu Q, Zhang Z, Zheng W, Li J, Ma N, Li R et al (2024) Identification and analysis of the intermediates from photodegradation of 3,3'-diamino-4,4'-azoxyfurazan (DAAF) by SERS and HPLC-MS/MS. J Anal Test 8:351-360. https://doi.org/10.1007/s41664-024-00303-4 [23] Xu J, Li J, Liu X, Hu X, Zhou H, Gao Z et al (2024) Structure-regulated enhanced Raman scattering on a semiconductor to study temperature-influenced enantioselective identification. Chem Sci 15(19):7308-7315. https://doi.org/10.1039/D4SC00855C [24] Lee S, Dang H, Moon J, Kim K, Joung Y, Park S et al (2024) SERS-based microdevices for use as in vitro diagnostic biosensors. Chem Soc Rev 53(11):5394-5427. https://doi.org/10.1039/D3CS01055D [25] Timpel M, Ligorio G, Ghiami A, Gavioli L, Cavaliere E, Chiappini A et al (2021) 2D-MoS2 goes 3D: transferring optoelectronic properties of 2D MoS2 to a large-area thin film. npj 2D Mater Appl 5:64. https://doi.org/10.1038/s41699-021-00244-x [26] Li J, Shao Y, Jiang P, Zhang Q, Hou C, Li Y et al (2019) 1T-Molybdenum disulfide/reduced graphene oxide hybrid fibers as high strength fibrous electrodes for wearable energy storage. J Mater Chem A 7:3143-3149. https://doi.org/10.1039/C8TA09328H [27] Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H (2011) MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc 133(19):7296-7299. https://doi.org/10.1021/ja201269b [28] Lv Y, Pan H, Lin J, Chen Z, Li Y, Li H et al (2022) One-pot hydrothermal approach towards 2D/2D heterostructure based on 1T MoS2 chemically bonding with GO for extremely high electrocatalytic performance. Chem Eng J 428:132072. https://doi.org/10.1016/j.cej.2021.132072 [29] Wang B, Zhao C, Wang Z, Yang KA, Cheng X, Liu W et al (2022) Wearable aptamer-field-effect transistor sensing system for noninvasive cortisol monitoring. Sci Adv 8:eabk0967. https://www.science.org/doi/10.1126/sciadv.abk0967 [30] Jiao J, Du K, Wang Y, Sun P, Zhao H, Tang P et al (2020) N plasma treatment on graphene oxide-MoS2 composites for improved performance in lithium ion batteries. Mater Chem Phys 240:122169. https://doi.org/10.1016/j.matchemphys.2019.122169 [31] Sun S, Oliveira BL, Jiménez-Osés G, Bernardes GJL (2018) Radical-mediated thiol-ene strategy: photoactivation of thiol-containing drugs in cancer cells. Angew Chem Int Ed 57:15832. https://doi.org/10.1002/anie.201811338 [32] Hoyle C, Bowman C (2010) Thiol-ene click chemistry. Angew Chem Int Ed 49:1540-1573. https://doi.org/10.1002/anie.200903924 [33] Wang Q, Cui H, Wang X, Hu Z, Tao P, Li M et al (2023) Exceptional light sensitivity by thiol-ene click lithography. J Am Chem Soc 145(5):3064-3074. https://doi.org/10.1021/jacs.2c11887 [34] Ganabady K, Negrini NC, Scherba JC, Nitschke BM, Alexander MR, Vining KH et al (2023) High-throughput screening of thiol-ene click chemistries for bone adhesive polymers. ACS Appl Mater Interfaces 15(44):50908-50915. https://doi.org/10.1021/acsami.3c12072 [35] Ueno H, Takahashi Y, Murakami S, Wani K, Matsumoto Y, Okamoto M et al (2022) Effect of simultaneous testing of two mice in the tail suspension test and forced swim test. Sci Rep 12:9224. https://doi.org/10.1038/s41598-022-12986-9 [36] Guo X, Yue H, Song S, Huang S, Gao X, Chen H et al (2020) Simultaneous electrochemical determination of dopamine and uric acid based on MoS2 nanoflowers-graphene/ITO electrode. Microchem J 154:104527. https://doi.org/10.1016/j.microc.2019.104527 [37] Zhang X, Zhang Q, Sun Y, Zhang P, Gao X, Zhang W et al (2016) MoS2-graphene hybrid nanosheets constructed 3D architectures with improved electrochemical performance for lithium-ion batteries and hydrogen evolution. Electrochim Acta 189:224-230. https://doi.org/10.1016/j.electacta.2015.12.082 [38] Manzoor MT, Kim JE, Jung JH, Han C, Choi SB, Oh IK (2018) Two-dimensional rGO-MoS2 hybrid additives for high-performance magnetorheological fluid. Sci Rep 8:12672. https://doi.org/10.1038/s41598-018-30861-4 [39] Hingangavkar GM, Kadam SA, Ma YR, Bandgar SS, Mulik RN, Patil VB (2023) MoS2-GO hybrid sensor: a discerning approach for detecting harmful H2S gas at room temperature. Chem Eng J 472:144789. https://doi.org/10.1016/j.cej.2023.144789 [40] Gadelh AC, Ohlberg DAA, Rabelo C, Neto RGS, Vasconcelos TL, Campos JL et al (2021) Localization of lattice dynamics in low-angle twisted bilayer graphene. Nature 590:405-409. https://doi.org/10.1038/s41586-021-03252-5 [41] Du Y, Wang J, Zou Y, Yao W, Hou J, Xia L et al (2017) Synthesis of molybdenum disulfide/reduced graphene oxide composites for effective removal of Pb(II) from aqueous solutions. Sci Bull 62(13):913-922. https://doi.org/10.1016/j.scib.2017.05.025 [42] Chaudhry I, Hu G, Ye H, Jensen L (2024) Toward modeling the complexity of the chemical mechanism in SERS. ACS Nano 18(32):20835-20850. https://doi.org/10.1021/acsnano.4c07198 [43] Wang C, Liu N, Wang N, Ma Z, Tian Y, Wang L et al (2021) Co-sensitization of TiO2 nanotube arrays with polymerized aromatic amines and its application in photoelectrochemical cathodic protection. J Electroanal Chem 901:115749. https://doi.org/10.1016/j.jelechem.2021.115749 [44] Zhang C, Tan J, Du B (2024) Reversible thermoelectric regulation of electromagnetic and chemical enhancement for rapid SERS detection. ACS Appl Mater Interfaces 16(9):12085-12094. https://doi.org/10.1021/acsami.3c18409 [45] Huang Z, Chen H, Ye H (2021) An ultrasensitive aptamer-antibody sandwich cortisol sensor for the noninvasive monitoring of stress state. Biosens Bioelectron 190:113451. https://doi.org/10.1016/j.bios.2021.113451 [46] Sia SK, Linder V, Parviz BA (2004) An integrated approach to a portable and low-cost immunoassay for resource-poor settings. Angew Chem Int Ed 116:504-508. https://doi.org/10.1002/ange.200353016 |