| [1] Wolpaw J, Birbaumer N, Heetderks W, McFarland D, Peckham P, Schalk G et al (2000) Brain-computer interface technology: a review of the first international meeting. IEEE Trans Neural Syst Rehabil Eng 8(2):164-173. https://doi.org/10.1109/TRE.2000.847807 [2] Yu Y, Liu Y, Yin E, Jiang J, Zhou Z, Hu D (2019) An asynchronous hybrid spelling approach based on EEG-EOG signals for Chinese character input. IEEE Trans Neural Syst Rehabil Eng 27(6):1292-1302. https://doi.org/10.1109/TNSRE.2019.2914916
 [3] Zhang Y (2021) Invasive BCI and noninvasive BCI with VR/AR technology. In: International Conference on Artificial Intelligence, Virtual Reality, and Visualization (AIVRV 2021), vol 12153. SPIE, pp 186-192. https://doi.org/10.1117/12.2626640
 [4] Lin CT, Chuang CH, Huang CS, Tsai SF, Lu SW, Chen YH et al (2014) Wireless and wearable EEG system for evaluating driver vigilance. IEEE Trans Biomed Circ Syst 8(2):165-176. https://doi.org/10.1109/TBCAS.2014.2316224
 [5] Casson AJ (2019) Wearable EEG and beyond. Biomed Eng Lett 9(1):53-71. https://doi.org/10.1007/s13534-018-00093-6
 [6] He C, Chen YY, Phang CR, Stevenson C, Chen IP, Jung TP et al (2023) Diversity and suitability of the state-of-the-art wearable and wireless EEG systems review. IEEE J Biomed Health Inform 27(8):3830-3843. https://doi.org/10.1109/JBHI.2023.3239053
 [7] Van Vliet M, Robben A, Chumerin N, Manyakov NV, Combaz A, Van Hulle MM (2012) Designing a brain-computer interface controlled video-game using consumer grade EEG hardware. In: 2012 ISSNIP Biosignals and Biorobotics Conference: Biosignals and Robotics for Better and Safer Living (BRC). IEEE, pp 1-6. https://doi.org/10.1109/BRC.2012.6222186
 [8] Barham MP, Clark GM, Hayden MJ, Enticott PG, Conduit R, Lum JA (2017) Acquiring research-grade ERPS on a shoestring budget: A comparison of a modified Emotiv and commercial SynAmps EEG system. Psychophysiology 54(9):1393-1404. https://doi.org/10.1111/psyp.12888
 [9] Riascos J, Villa S, Maciel A, Nedel L, Barone D (2019) Towards moving virtual arms using brain-computer interface. In: Computer Graphics International Conference. Springer, pp 445-452. https://doi.org/10.1007/978-3-030-22514-8_43
 [10] Katona J, Ujbanyi T, Sziladi G, Kovari A (2016) Speed control of Festo Robotino mobile robot using NeuroSky MindWave EEG headset based brain-computer interface. In: 2016 7th IEEE International Conference on Cognitive Infocommunications (CogInfoCom). IEEE, pp 000251-000256.
 [11] Allison BZ, Brunner C, Altstätter C, Wagner IC, Grissmann S, Neuper C (2012) A hybrid ERD/SSVEP BCI for continuous simultaneous two dimensional cursor control. J Neurosci Methods 209(2):299-307. https://doi.org/10.1016/j.jneumeth.2012.06.022
 [12] Chen L, Chen P, Zhao S, Luo Z, Chen W, Pei Y et al (2021) Adaptive asynchronous control system of robotic arm based on augmented reality-assisted brain-computer interface. J Neural Eng 18(6):066005. https://doi.org/10.1088/1741-2552/ac3044
 [13] Zhang R, Cao L, Xu Z, Zhang Y, Zhang L, Hu Y et al (2023) Improving AR-SSVEP recognition accuracy under high ambient brightness through iterative learning. IEEE Trans Neural Syst Rehabil Eng 31:1796-1806. https://doi.org/10.1109/TNSRE.2023.3260842
 [14] Mahmood M, Kim N, Mahmood M, Kim H, Kim H, Rodeheaver N et al (2022) VR-enabled portable brain-computer interfaces via wireless soft bioelectronics. Biosens Bioelectron 210:114333. https://doi.org/10.1016/j.bios.2022.114333
 [15] Xu J, Zhong B (2018) Review on portable EEG technology in educational research. Comput Hum Behav 81:340-349. https://doi.org/10.1016/j.chb.2017.12.037
 [16] Wang Y, Chen X, Gao X, Gao S (2016) A benchmark dataset for SSVEP-based brain-computer interfaces. IEEE Trans Neural Syst Rehabil Eng 25(10):1746-1752. https://doi.org/10.1109/TNSRE.2016.2627556
 [17] Nakanishi M, Wang Y, Chen X, Wang Y, Gao X, Jung TP (2018) Enhancing detection of SSVEPs for a high-speed brain speller using task-related component analysis. IEEE Trans Biomed Eng 65(1):104-112. https://doi.org/10.1109/TBME.2017.2694818
 [18] Lin ZL, Zhang CS, Wu W, Gao XR (2006) Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs. IEEE Trans Biomed Eng 53(12):2610-2614. https://doi.org/10.1109/TBME.2006.889197
 [19] Chen XG, Wang YJ, Gao SK, Jung TP, Gao XR (2015) Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface. J Neural Eng 12(4):046008. https://doi.org/10.1088/1741-2560/12/4/046008
 [20] Cheng M, Gao X, Gao S, Xu D (2002) Design and implementation of a brain-computer interface with high transfer rates. IEEE Trans Biomed Eng 49(10):1181-1186. https://doi.org/10.1109/TBME.2002.803536
 [21] Liu X, Zhang M, Subei B, Richardson AG, Lucas TH, Van der Spiegel J (2015) The PennBMBI: Design of a general purpose wireless brain-machine-brain interface system. IEEE Trans Biomed Circ Syst 9(2):248-258. https://doi.org/10.1109/TBCAS.2015.2392555
 [22] Yin E, Zhou Z, Jiang J, Yu Y, Hu D (2015) A dynamically optimized SSVEP brain-computer interface (BCI) speller. IEEE Trans Biomed Eng 62(6):1447-1456. https://doi.org/10.1109/TBME.2014.2320948
 [23] Jia C, Gao X, Hong B, Gao S (2010) Frequency and phase mixed coding in SSVEP-based brain-computer interface. IEEE Trans Biomed Eng 58(1):200-206. https://doi.org/10.1109/TBME.2010.2068571
 [24] Liu BC, Huang XS, Wang YJ, Chen XG, Gao XR (2020) Beta: A large benchmark database toward SSVEP-BCI application. Front Neurosci 14:627. https://doi.org/10.3389/fnins.2020.00627
 [25] Badcock NA, Preece KA, de Wit B, Glenn K, Fieder N, Thie J et al (2015) Validation of the Emotiv EPOC EEG system for research quality auditory event-related potentials in children. PeerJ 3:e907. https://doi.org/10.7717/peerj.907
 [26] Sidelinger L, Zhang M, Frohlich F, Daughters SB (2023) Day-to-day individual alpha frequency variability measured by a mobile EEG device relates to anxiety. Eur J Neurosci 57(11):1815-1833. https://doi.org/10.1111/ejn.16002
 [27] Bridwell DA, Leslie E, McCoy DQ, Plis SM, Calhoun VD (2017) Cortical sensitivity to guitar note patterns: EEG entrainment to repetition and key. Front Hum Neurosci 11:90. https://doi.org/10.3389/fnhum.2017.00090
 [28] Zerafa R, Camilleri T, Falzon O, Camilleri KP (2018) A comparison of a broad range of EEG acquisition devices-is there any difference for SSVEP BCIs? Brain Comput Interfaces 5(4):121-131. https://doi.org/10.1080/2326263X.2018.1550710
 [29] Ming G, Zhong H, Pei W, Gao X, Wang Y (2023) A new grid stimulus with subtle flicker perception for user-friendly SSVEP-based BCIs. J Neural Eng 20(2):026010. https://doi.org/10.1088/1741-2552/acbee0
 [30] Barraza P, Dumas G, Liu H, Blanco-Gomez G, van den Heuvel MI, Baart M et al (2019) Implementing EEG hyperscanning setups. MethodsX 6:428-436. https://doi.org/10.1016/j.mex.2019.02.021
 [31] Gu X, Cao Z, Jolfaei A, Xu P, Wu D, Jung TP et al (2021) EEG-based brain-computer interfaces (BCIs): A survey of recent studies on signal sensing technologies and computational intelligence approaches and their applications. IEEE/ACM Trans Comput Biol Bioinform 18(5):1645-1666. https://doi.org/10.1109/TCBB.2021.3052811
 [32] Kiss Á, Huszár OM, Bodosi B, Eördegh G, Tót K, Nagy A et al (2023) Automated preprocessing of 64 channel electroenchephalograms recorded by biosemi instruments. MethodsX 11:102378. https://doi.org/10.1016/j.mex.2023.102378
 [33] Gu M, Pei W, Gao X, Wang Y (2024) An open dataset for human SSVEPs in the frequency range of 1-60 Hz. Sci Data 11(1):196. https://doi.org/10.1038/s41597-024-03023-7
 [34] Zhao X, Zhou T, Wu C, Xu T, Wang Z, Hu H (2023) A hierarchical detection method for steady state peripheral visual evoked potential. In: 2023 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). IEEE, Abu Dhabi, pp 0486-0491. https://doi.org/10.1109/DASC/PiCom/CBDCom/Cy59711.2023.10361425
 [35] Wang Z, Xu T, Chen X, Zhou T, Hu H, Wu C (2023) Enhance detection of SSVEPs through a sinusoidal-referenced task-related component analysis method. In: IEEE INFOCOM 2023 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). IEEE, Hoboken, pp 1-6. https://doi.org/10.1109/INFOCOMWKSHPS57453.2023.10226001
 [36] Li A, Wang Z, Zhao X, Xu T, Zhou T, Hu H (2023) MDTL: A novel and model-agnostic transfer learning strategy for cross-subject motor imagery BCI. IEEE Trans Neural Syst Rehabil Eng 31:1743-1753. https://doi.org/10.1109/TNSRE.2023.3259730
 [37] Xu G, Wang Z, Hu H, Zhao X, Li R, Zhou T et al (2024) Riemannian locality preserving method for transfer learning with applications on brain-computer interface. IEEE J Biomed Health Inform 28(8):4565-4576. https://doi.org/10.1109/JBHI.2024.3402324
 [38] Lin BS, Wang HA, Huang YK, Wang YL, Lin BS (2020) Design of SSVEP enhancement-based brain computer interface. IEEE Sens J 21(13):14330-14338. https://doi.org/10.1109/JSEN.2020.3033470
 [39] Li R, Zhang Y, Fan G, Li Z, Li J, Fan S et al (2023) Design and implementation of high sampling rate and multichannel wireless recorder for EEG monitoring and SSVEP response detection. Front Neurosci 17. https://doi.org/10.3389/fnins.2023.1193950
 [40] Byun W, Je M, Kim JH (2022) An energy-efficient domain-specific reconfigurable array processor with heterogeneous PEs for wearable brain-computer interface SoCs. IEEE Trans Circuits Syst I Regul Pap 69(12):4872-4885. https://doi.org/10.1109/TCSI.2022.3197186
 [41] Feng L, Shan H, Zhang Y, Zhu Z (2022) An efficient model-compressed EEGNet accelerator for generalized brain-computer interfaces with near sensor intelligence. IEEE Trans Biomed Circuits Syst 16(6):1239-1249. https://doi.org/10.1109/TBCAS.2022.3215962
 [42] Reyes-Muñoz A, Domingo MC, López-Trinidad MA, Delgado JL (2016) Integration of body sensor networks and vehicular ad-hoc networks for traffic safety. Sensors 16(1):107. https://doi.org/10.3390/s16010107
 [43] Xu G, Wang Z, Zhao X, Li R, Zhou T, Xu T et al (2023) Attentional state classification using amplitude and phase feature extraction method based on filter bank and Riemannian manifold. IEEE Trans Neural Syst Rehabil Eng 31:4402-4412. https://doi.org/10.1109/TNSRE.2023.3329482
 [44] Xu G, Wang Z, Zhao X, Li R, Zhou T, Xu T et al (2024) A subject-specific attention index based on the weighted spectral power. IEEE Trans Neural Syst Rehabil Eng 32:1687-1702. https://doi.org/10.1109/TNSRE.2024.3392242
 [45] Guo M, Yue K, Hu H, Lu K, Han Y, Chen S et al (2022) Neural research on depth perception and stereoscopic visual fatigue in virtual reality. Brain Sci 12(9):1231. https://doi.org/10.3390/brainsci12091231
 [46] Ashton H, Reid K, Marsh R, Johnson I, Alter K, Griffiths T (2007) High frequency localised “hot spots’’ in temporal lobes of patients with intractable tinnitus: a quantitative electroencephalographic (QEEG) study. Neurosci Lett 426(1):23-28. https://doi.org/10.1016/j.neulet.2007.08.034
 [47] Hu H, Wang Z, Zhao X, Li R, Li A, Si Y et al (2024) A survey on brain-computer interface-inspired communications: Opportunities and challenges. IEEE Commun Surv Tutorials 1-1. https://doi.org/10.1109/COMST.2024.3396847
 [48] Haifeng L, Zhenyu W, Ruxue L, Zhao X, Tianheng X, Ting Z et al (2024) A comparative study of stereo-dependent SSVEP targets and their impact on VR-BCI performance. Front Neurosci 18:1367932. https://doi.org/10.3389/fnins.2024.1367932
 [49] Wang Z, Hu H, Chen X, Zhou T, Xu T (2020) A novel SSVEP-based brain-computer interface using joint frequency and space modulation. In: IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). IEEE, Toronto, pp 906-911. https://doi.org/10.1109/INFOCOMWKSHPS50562.2020.9162716
 [50] Zhao X, Wang Z, Zhang M, Hu H (2021) A comfortable steady state visual evoked potential stimulation paradigm using peripheral vision. J Neural Eng 18(5):056021. https://doi.org/10.1088/1741-2552/abf397
 [51] Zhao X, Wang Z, Li R, Xu G, Zhou T, Xu T et al (2022) An SSPVEP brain-computer interface using a small amount of flicker stimuli. IEEE Access 10:73257-73268. https://doi.org/10.1109/ACCESS.2022.3188855
 [52] Ruxue L, Hu H, Zhao X, Wang Z, Xu G (2023) A static paradigm based on illusion-induced VEP for brain-computer interfaces. J Neural Eng 20(2):026006. https://doi.org/10.1088/1741-2552/acbdc0
 [53] Li R, Zhao X, Wang Z, Xu G, Hu H, Zhou T et al (2023) A novel hybrid brain-computer interface combining the illusion-induced VEP and SSVEP. IEEE Trans Neural Syst Rehabil Eng 31:4760-4772. https://doi.org/10.1109/TNSRE.2023.3337525
 [54] Battaglia F, Gugliandolo G, Campobello G, Donato N (2023) EEG-over-BLE: A low-latency, reliable and low-power architecture for multi-channel EEG monitoring systems. IEEE Trans Instrum Meas 72:1-10. https://doi.org/10.1109/TIM.2023.3268471
 [55] Di Flumeri G, Aricò P, Borghini G, Sciaraffa N, Di Florio A, Babiloni F (2019) The dry revolution: Evaluation of three different EEG dry electrode types in terms of signal spectral features, mental states classification and usability. Sensors 19(6):1365. https://doi.org/10.3390/s19061365
 [56] Zander TO, Andreessen LM, Berg A, Bleuel M, Pawlitzki J, Zawallich L et al (2017) Evaluation of a dry EEG system for application of passive brain-computer interfaces in autonomous driving. Front Hum Neurosci 11:78. https://doi.org/10.3389/fnhum.2017.00078
 |